Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Insufficient intake of beneficial food components into the human body is a major issue for many people. Among the strategies proposed to overcome this complication, colloid systems have been proven to offer successful solutions in many cases. The scientific community agrees that the production of colloid delivery systems is a good way to adequately protect and deliver nutritional components. In this review, we present the recent advances on bioactive phenolic compounds delivery mediated by colloid systems. As we are aware that this field is constantly evolving, we have focused our attention on the progress made in recent years in this specific field. To achieve this goal, structural and dynamic aspects of different colloid delivery systems, and the various interactions with two bioactive constituents, are presented and discussed. The choice of the appropriate delivery system for a given molecule depends on whether the drug is incorporated in an aqueous or hydrophobic environment. With this in mind, the aim of this evaluation was focused on two case studies, one representative of hydrophobic phenolic compounds and the other of hydrophilic ones. In particular, hydroxytyrosol was selected as a bioactive phenol with a hydrophilic character, while curcumin was selected as typical representative hydrophobic molecules.

Details

Title
Progress in Colloid Delivery Systems for Protection and Delivery of Phenolic Bioactive Compounds: Two Study Cases—Hydroxytyrosol and Curcumin
Author
Cuomo, Francesca 1   VIAFID ORCID Logo  ; Iacovino, Silvio 1   VIAFID ORCID Logo  ; Sacco, Pasquale 2   VIAFID ORCID Logo  ; De Leonardis, Antonella 1   VIAFID ORCID Logo  ; Ceglie, Andrea 3 ; Lopez, Francesco 1   VIAFID ORCID Logo 

 Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; [email protected] (F.C.); [email protected] (S.I.); [email protected] (A.D.L.) 
 Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy; [email protected] 
 Department of Chemistry “Ugo Schiff”, Center for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; [email protected] 
First page
921
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627826333
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.