Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ship detection based on synthetic aperture radar (SAR) images has made a breakthrough in recent years. However, small ships, which may be regarded as speckle noise, pose enormous challenges to the accurate detection of SAR images. In order to enhance the detection performance of small ships in SAR images, a novel detection method named a spatial information integration network (SII-Net) is proposed in this paper. First, a channel-location attention mechanism (CLAM) module which extracts position information along with two spatial directions is proposed to enhance the detection ability of the backbone network. Second, a high-level features enhancement module (HLEM) is customized to reduce the loss of small target location information in high-level features via using multiple pooling layers. Third, in the feature fusion stage, a refined branch is presented to distinguish the location information between the target and the surrounding region by highlighting the feature representation of the target. The public datasets LS-SSDD-v1.0, SSDD and SAR-Ship-Dataset are used to conduct ship detection tests. Extensive experiments show that the SII-Net outperforms state-of-the-art small target detectors and achieves the highest detection accuracy, especially when the target size is less than 30 pixels by 30 pixels.

Details

Title
SII-Net: Spatial Information Integration Network for Small Target Detection in SAR Images
Author
Su, Nan 1   VIAFID ORCID Logo  ; He, Jiayue 1 ; Yan, Yiming 1   VIAFID ORCID Logo  ; Zhao, Chunhui 1 ; Xing, Xiangwei 2 

 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China; [email protected] (N.S.); [email protected] (J.H.); [email protected] (C.Z.); Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China 
 Beijing Remote Sensing Information Institute, Beijing 100094, China; [email protected] 
First page
442
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627828009
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.