Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The going-concern opinions of certified public accountants (CPAs) and auditors are very critical, and due to misjudgments, the failure to discover the possibility of bankruptcy can cause great losses to financial statement users and corporate stakeholders. Traditional statistical models have disadvantages in giving going-concern opinions and are likely to cause misjudgments, which can have significant adverse effects on the sustainable survival and development of enterprises and investors’ judgments. In order to embrace the era of big data, artificial intelligence (AI) and machine learning technologies have been used in recent studies to judge going concern doubts and reduce judgment errors. The Big Four accounting firms (Deloitte, KPMG, PwC, and EY) are paying greater attention to auditing via big data and artificial intelligence (AI). Thus, this study integrates AI and machine learning technologies: in the first stage, important variables are selected by two decision tree algorithms, classification and regression trees (CART), and a chi-squared automatic interaction detector (CHAID); in the second stage, classification models are respectively constructed by extreme gradient boosting (XGB), artificial neural network (ANN), support vector machine (SVM), and C5.0 for comparison, and then, financial and non-financial variables are adopted to construct effective going-concern opinion decision models (which are more accurate in prediction). The subjects of this study are listed companies and OTC (over-the-counter) companies in Taiwan with and without going-concern doubts from 2000 to 2019. According to the empirical results, among the eight models constructed in this study, the prediction accuracy of the CHAID–C5.0 model is the highest (95.65%), followed by the CART–C5.0 model (92.77%).

Details

Title
Using Hybrid Artificial Intelligence and Machine Learning Technologies for Sustainability in Going-Concern Prediction
Author
Der-Jang, Chi; Zong-De Shen
First page
1810
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627845744
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.