It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Micro cone-beam computed tomography (µCBCT) imaging is of utmost importance for carrying out extensive preclinical research in rodents. The imaging of animals is an essential step prior to preclinical precision irradiation, but also in the longitudinal assessment of treatment outcomes. However, imaging artifacts such as beam hardening will occur due to the low energetic nature of the X-ray imaging beam (i.e., 60 kVp). Beam hardening artifacts are especially difficult to resolve in a ‘pancake’ imaging geometry with stationary source and detector, where the animal is rotated around its sagittal axis, and the X-ray imaging beam crosses a wide range of thicknesses. In this study, a seven-layer U-Net based network architecture (vMonoCT) is adopted to predict virtual monoenergetic X-ray projections from polyenergetic X-ray projections. A Monte Carlo simulation model is developed to compose a training dataset of 1890 projection pairs. Here, a series of digital anthropomorphic mouse phantoms was derived from the reference DigiMouse phantom as simulation geometry. vMonoCT was trained on 1512 projection pairs (= 80%) and tested on 378 projection pairs (= 20%). The percentage error calculated for the test dataset was 1.7 ± 0.4%. Additionally, the vMonoCT model was evaluated on a retrospective projection dataset of five mice and one frozen cadaver. It was found that beam hardening artifacts were minimized after image reconstruction of the vMonoCT-corrected projections, and that anatomically incorrect gradient errors were corrected in the cranium up to 15%. Our results disclose the potential of Artificial Intelligence to enhance the µCBCT image quality in biomedical applications. vMonoCT is expected to contribute to the reproducibility of quantitative preclinical applications such as precision irradiations in X-ray cabinets, and to the evaluation of longitudinal imaging data in extensive preclinical studies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium (GRID:grid.5596.f) (ISNI:0000 0001 0668 7884)
2 KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium (GRID:grid.5596.f) (ISNI:0000 0001 0668 7884); UCLouvain, Institut de Recherche Expérimentale Et Clinique, Molecular Imaging Radiotherapy and Oncology Lab, Brussels, Belgium (GRID:grid.7942.8) (ISNI:0000 0001 2294 713X)