Full text

Turn on search term navigation

© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multidrug resistance (MDR) bacteria pose a serious threat to human health. The development of alternative treatment modalities and therapeutic agents for treating MDR bacteria‐caused infections remains a global challenge. Herein, a series of near‐infrared (NIR) anion–π+ photosensitizers featuring aggregation‐induced emission (AIE‐PSs) are rationally designed and successfully developed for broad‐spectrum MDR bacteria eradication. Due to the strong intramolecular charge transfer (ICT) and enhanced highly efficient intersystem crossing (ISC), these electron‐rich anion–π+ AIE‐PSs show boosted type I reactive oxygen species (ROS) generation capability involving hydroxyl radicals and superoxide anion radicals, and up to 99% photodynamic killing efficacy is achieved for both Methicillin‐resistant Staphylococcus aureus (MRSA) and multidrug resistant Escherichia coli (MDR E. coli) under a low dose white light irradiation (16 mW cm−2). In vivo experiments confirm that one of these AIE‐PSs exhibit excellent therapeutic performance in curing MRSA or MDR E. coli‐infected wounds with negligible side‐effects. The study would thus provide useful guidance for the rational design of high‐performance type I AIE‐PSs to overcome antibiotic resistance.

Details

Title
Precise Molecular Engineering of Type I Photosensitizers with Near‐Infrared Aggregation‐Induced Emission for Image‐Guided Photodynamic Killing of Multidrug‐Resistant Bacteria
Author
Xiao, Peihong 1 ; Shen, Zipeng 2 ; Wang, Deliang 3 ; Pan, Yinzhen 2 ; Li, Ying 2 ; Gong, Junyi 4 ; Wang, Lei 3 ; Wang, Dong 2 ; Ben Zhong Tang 5   VIAFID ORCID Logo 

 Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China 
 Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China 
 Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China 
 Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China 
 Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen City, Guangdong, China 
Section
Research Articles
Publication year
2022
Publication date
Feb 2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2628417204
Copyright
© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.