It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Towards developing a polymeric matrix characterized by high strength to cost ratio, polypropylene (PP) was hybridized with low-cost particulate snail shell (PSS) and kenaf fiber (KF) via compression moulding at 180 °C and 0.2 MPa. The developed composites were grouped into three and labeled as mix 2, 4, and 10. Each group entailed the blend of 5, 10, 20, and 30 wt% KF with 2, 4, 10 wt% PSS respectively. From the results, it is observed that the hardness value was enhanced by the blend of 5 to 30 wt% KF and 2, 4, and 10 wt% PSS. However, 2 wt% PSS mix with 5 to 30 wt% KF resulted in progressive improvement in impact, compressive, flexural, and tensile strengths values. The 4 wt% PSS yielded consecutive increase in impact, compressive and flexural strength when combined with 5 and 10 wt% KF. However, it was observed that subsequent addition of 20 and 30 wt% KF led to a marginal reduction in the strength values. The tensile strength attained optimum value when 4 wt% PSS was commixed with 30 wt% KF. Conversely, the combinations of 10 wt% PSS with 5, 10, 20, and 30 wt% KF had no significant improvement to the mechanical properties of PSS/KF-bio-PP composite (except for hardness) siring strength decrease. Taguchi optimization revealed that the collage of 4 wt% PSS and 10 wt% KF presented optimum mix for hybrid bio-PP composite.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Landmark University, Department of Mechanical Engineering, Omu-Aran, Nigeria (GRID:grid.448923.0) (ISNI:0000 0004 1767 6410)
2 Federal University of Technology, Department of Metallurgical and Materials Engineering, Akure, Nigeria (GRID:grid.411257.4) (ISNI:0000 0000 9518 4324)
3 Ekiti State University, Department of Mechanical Engineering, Ado Ekiti, Nigeria (GRID:grid.412361.3) (ISNI:0000 0000 8750 1780)