Abstract

How mechanical stress actively impacts the physiology and pathophysiology of cells and tissues is little investigated in vivo. The colon is constantly submitted to multi-frequency spontaneous pulsatile mechanical waves, which highest frequency functions, of 2 s period, remain poorly understood. Here we find in vivo that high frequency pulsatile mechanical stresses maintain the physiological level of mice colon stem cells (SC) through the mechanosensitive Ret kinase. When permanently stimulated by a magnetic mimicking-tumor growth analogue pressure, we find that SC levels pathologically increase and undergo mechanically induced hyperproliferation and tumorigenic transformation. To mimic the high frequency pulsatile mechanical waves, we used a generator of pulsed magnetic force stimulation in colonic tissues pre-magnetized with ultra-magnetic liposomes. We observed the pulsatile stresses using last generation ultra-wave dynamical high-resolution imaging. Finally, we find that the specific pharmacological inhibition of Ret mechanical activation induces the regression of spontaneous formation of SC, of CSC markers, and of spontaneous sporadic tumorigenesis in Apc mutated mice colons. Consistently, in human colon cancer tissues, Ret activation in epithelial cells increases with tumor grade, and partially decreases in leaking invasive carcinoma. High frequency pulsatile physiological mechanical stresses thus constitute a new niche that Ret-dependently fuels mice colon physiological SC level. This process is pathologically over-activated in the presence of permanent pressure due to the growth of tumors initiated by pre-existing genetic alteration, leading to mechanotransductive self-enhanced tumor progression in vivo, and repressed by pharmacological inhibition of Ret.

Ho-Bouldoires, Sollier, Zamfirov and Broders-Bondon et al. show that high frequency pulsatile mechanical stresses maintain the physiological level of mice colon stem cells through the mechanosensitive Ret kinase and that Ret activation is elevated in human colon cancer tissue. They go on to show that the maintenance of such stimulation in the form of tumour growth pressure results in mechanically-induced hyperproliferation and tumorigenic transformation of stem cells, which can be prevented by Ret kinase inhibition.

Details

Title
Ret kinase-mediated mechanical induction of colon stem cells by tumor growth pressure stimulates cancer progression in vivo
Author
Nguyen Ho-Bouldoires Thanh Huong 1   VIAFID ORCID Logo  ; Sollier Kévin 1   VIAFID ORCID Logo  ; Zamfirov Laura 2   VIAFID ORCID Logo  ; Broders-Bondon Florence 3   VIAFID ORCID Logo  ; Mitrossilis Démosthène 4   VIAFID ORCID Logo  ; Bermeo, Sebastian 5   VIAFID ORCID Logo  ; Guerin, Coralie L 6   VIAFID ORCID Logo  ; Chipont Anna 6   VIAFID ORCID Logo  ; Champenois Gabriel 7   VIAFID ORCID Logo  ; Leclère Renaud 7   VIAFID ORCID Logo  ; Nicolas, André 7 ; Ranno Laurent 8   VIAFID ORCID Logo  ; Michel, Aude 9   VIAFID ORCID Logo  ; Ménager, Christine 9   VIAFID ORCID Logo  ; Meseure Didier 7   VIAFID ORCID Logo  ; Demené Charlie 10   VIAFID ORCID Logo  ; Tanter Mickael 10   VIAFID ORCID Logo  ; Fernández-Sánchez, Maria Elena 3   VIAFID ORCID Logo  ; Farge, Emmanuel 3   VIAFID ORCID Logo 

 Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, Paris, France 
 Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, Paris, France; PSL Research University, Physics for Medicine Paris, ESPCI ParisTech, Paris, France (GRID:grid.440907.e) (ISNI:0000 0004 1784 3645) 
 Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, Paris, France (GRID:grid.440907.e) 
 Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, Paris, France (GRID:grid.440907.e); Biomedical Research Foundation of the Academy of Athens, Athens, Greece (GRID:grid.417975.9) (ISNI:0000 0004 0620 8857) 
 Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, Paris, France (GRID:grid.417975.9) 
 Cytometry Platform, Institut Curie, Paris, France (GRID:grid.418596.7) (ISNI:0000 0004 0639 6384) 
 Platform of Investigative Pathology, Institut Curie, Paris, France (GRID:grid.418596.7) (ISNI:0000 0004 0639 6384) 
 Grenoble Alpes University, NEEL Institut, CNRS, Grenoble, France (GRID:grid.450307.5) (ISNI:0000 0001 0944 2786) 
 Sorbonne Université, Laboratoire PHENIX Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, Paris, France (GRID:grid.462844.8) (ISNI:0000 0001 2308 1657) 
10  PSL Research University, Physics for Medicine Paris, ESPCI ParisTech, Paris, France (GRID:grid.440907.e) (ISNI:0000 0004 1784 3645) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
23993642
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2629528840
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.