Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The lightweight design of trucks is of great importance to enhance the load capacity and reduce the production cost. As a result, the taper-leaf spring will gradually replace the multi-leaf spring to become the main elastic element of the suspension for trucks. To reveal the changes of the handling stability after the replacement, the simulations and comparison of the taper-leaf and the multi-leaf spring suspensions with the same vertical stiffness for trucks were conducted. Firstly, to ensure the same comfort of the truck before and after the replacement, an analytical method of replacing the multi-leaf spring with the taper-leaf spring was proposed. Secondly, the effectiveness of the method was verified by the stiffness tests based on a case study. Thirdly, the dynamic models of the taper-leaf spring and the multi-leaf spring with the same vertical stiffness are established and validated, respectively. Based on this, the dynamic models of the truck before and after the replacement were established and verified by the steady static circular test, respectively. Lastly, the handling stability indexes for the truck were compared by the simulations of the drift test, the ramp steer test, and the step steer test. The results show that the yaw rate of the truck almost does not change, the steering wheel moment decreases, the vehicle roll angle obviously increases, and the vehicle side slip angle slightly increases after the replacement. Thus, the truck with the taper-leaf spring suspension has better steering portability, however, its handling stability performs worse.

Details

Title
Truck Handling Stability Simulation and Comparison of Taper-Leaf and Multi-Leaf Spring Suspensions with the Same Vertical Stiffness
Author
Zhao, Leilei 1 ; Zhang, Yunshan 2 ; Yu, Yuewei 1 ; Zhou, Changcheng 1 ; Li, Xiaohan 1 ; Li, Hongyan 3 

 School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China; [email protected] (L.Z.); [email protected] (X.L.) 
 Shandong Automobile Spring Factory Zibo Co.,Ltd., Zibo 255000, China; [email protected] 
 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China; [email protected] 
First page
1293
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2630520402
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.