Abstract

Stem cell-derived exosomes have recently been regarded as potential drugs for treating spinal cord injury (SCI) by reducing reactive oxygen species (ROS) and suppressing M1 macrophage polarization. However, the roles of ROS and exosomes in the process of M1 macrophage polarization are not known. Herein, we demonstrated that ROS can induce M1 macrophage polarization and have a concentration-dependent effect. ROS can induce M1 macrophage polarization through the MAPK-NFκB P65 signaling pathway. Dental pulp stem cell (DPSC)-derived exosomes can reduce macrophage M1 polarization through the ROS-MAPK-NFκB P65 signaling pathway in treating SCI. This study suggested that DPSC-derived exosomes might be a potential drug for treating SCI. Disruption of the cycle between ROS and M1 macrophage polarization might also be a potential effective treatment by reducing secondary damage.

Details

Title
Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury
Author
Liu, Chao; Hu, Fanqi; Jiao, Genlong; Guo, Yue; Zhou, Pan; Zhang, Yuning; Zhang, Zhen; Yi, Jing; You, Yonggang; Li, Zhizhong; Wang, Hua; Zhang, Xuesong
Pages
1-19
Section
Research
Publication year
2022
Publication date
2022
Publisher
BioMed Central
e-ISSN
14773155
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2630520907
Copyright
© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.