Abstract

We consider an increasingly popular study design where single-cell RNA-seq data are collected from multiple individuals and the question of interest is to find genes that are differentially expressed between two groups of individuals. Towards this end, we propose a statistical method named IDEAS (individual level differential expression analysis for scRNA-seq). For each gene, IDEAS summarizes its expression in each individual by a distribution and then assesses whether these individual-specific distributions are different between two groups of individuals. We apply IDEAS to assess gene expression differences of autism patients versus controls and COVID-19 patients with mild versus severe symptoms.

Details

Title
IDEAS: individual level differential expression analysis for single-cell RNA-seq data
Author
Zhang, Mengqi; Liu, Si; Miao, Zhen; Han, Fang; Gottardo, Raphael; Sun, Wei  VIAFID ORCID Logo 
Pages
1-17
Section
Method
Publication year
2022
Publication date
2022
Publisher
BioMed Central
ISSN
14747596
e-ISSN
1474760X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2630535216
Copyright
© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.