It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Precision agriculture techniques are widely used to optimize fertilizer and soil applications. Furthermore, these techniques could also be combined with new statistical tools to assist in phenotyping in breeding programs. In this study, the research hypothesis was that soybean cultivars show phenotypic differences concerning wavelength and vegetation index measurements.
Results
In this research, we associate variables obtained via high-throughput phenotyping with the grain yield and cycle of soybean genotypes. The experiment was carried out during the 2018/2019 and 2019/2020 crop seasons, under a randomized block design with four replications. The evaluated soybean genotypes included 7067, 7110, 7739, 8372, Bonus, Desafio, Maracai, Foco, Pop, and Soyouro. The phenotypic traits evaluated were: first pod height (FPH), plant height (PH), number of branches (NB), stem diameter (SD), days to maturity (DM), and grain yield (YIE). The spectral variables evaluated were wavelengths and vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI, and MSAVI). The genotypes Maracai and Foco showed the highest grain yields throughout the crop seasons, in addition to belonging to the groups with the highest means for all VIs. YIE was positively correlated with the NDVI and certain wavelengths (735 and 790 nm), indicating that genotypes with higher values for these spectral variables are more productive. By path analyses, GNDVI and NDRE had the highest direct effects on the dependent variable DM, while NDVI had a higher direct effect on YIE.
Conclusions
Our findings revealed that early and productive genotypes can be selected based on vegetation indices and wavelengths. Soybean genotypes with a high grain yield have higher means for NDVI and certain wavelengths (735 and 790 nm). Early genotypes have higher means for NDRE and GNDVI. These results reinforce the importance of high-throughput phenotyping as an essential tool in soybean breeding programs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer