Full text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the system that converts kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning and recycling. Offshore development and digitalization are also a focal point in this study. Drivetrain in this context includes the whole power conversion system: main bearing, shafts, gearbox, generator and power converter. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps. The main challenges in drivetrain research identified in this paper include drivetrain dynamic responses in large or floating turbines, aerodynamic and farm control effects, use of rare-earth material in generators, improving reliability through prognostics, and use of advances in digitalization. These challenges illustrate the multidisciplinary aspect of wind turbine drivetrains, which emphasizes the need for more interdisciplinary research and collaboration.

Details

Title
Wind turbine drivetrains: state-of-the-art technologies and future development trends
Author
Nejad, Amir R 1   VIAFID ORCID Logo  ; Keller, Jonathan 2   VIAFID ORCID Logo  ; Guo, Yi 2 ; Sheng, Shawn 2 ; Polinder, Henk 3 ; Watson, Simon 3   VIAFID ORCID Logo  ; Dong, Jianning 3 ; Qin, Zian 3 ; Ebrahimi, Amir 4 ; Schelenz, Ralf 5   VIAFID ORCID Logo  ; Francisco Gutiérrez Guzmán 6   VIAFID ORCID Logo  ; Cornel, Daniel 6 ; Golafshan, Reza 6 ; Jacobs, Georg 6   VIAFID ORCID Logo  ; Blockmans, Bart 7 ; Bosmans, Jelle 7 ; Pluymers, Bert 7 ; Carroll, James 8 ; Koukoura, Sofia 8 ; Hart, Edward 8   VIAFID ORCID Logo  ; McDonald, Alasdair 9 ; Natarajan, Anand 10 ; Torsvik, Jone 11 ; Moghadam, Farid K 1 ; Daems, Pieter-Jan 12 ; Verstraeten, Timothy 12 ; Peeters, Cédric 12 ; Helsen, Jan 12 

 Marine Technology Department, Norwegian University of Science and Technology, 7491 Trondheim, Norway 
 National Renewable Energy Laboratory, Golden, CO 80401, USA 
 Technische Universiteit Delft, Mekelweg 2, 2628 CD Delft, the Netherlands 
 Institute for Drive Systems and Power Electronics, Leibniz University Hannover, Postfach 6009, 30060 Hannover, Germany 
 Center for Wind Power Drives (CWD), RWTH Aachen University, Campus-Boulevard 61, 52074 Aachen, Germany 
 Institute for Machine Elements and Systems Engineering (MSE), RWTH Aachen University, Schinkelstrasse 10, 52062 Aachen, Germany 
 LMSD Division, Mechanical Engineering Department, KU Leuven, Heverlee, Belgium; Core Lab Dynamics of Mechanical and Mechatronic Systems, Flanders Make, Heverlee, Belgium 
 Wind Energy and Control Centre, Electronic And Electrical Engineering, University of Strathclyde, 16 Richmond St, Glasgow G1 1XQ, United Kingdom 
 Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom 
10  DTU Wind Energy, Frederiksborgvej 399, 4000 Roskilde, Denmark 
11  Equinor ASA, Sandslivegen 90, 5254 Sandsli, Norway 
12  Department of Mechanical Engineering, Vrije Universiteit Brussel, OWI-Lab, B-1050 Brussels, Belgium 
Pages
387-411
Publication year
2022
Publication date
2022
Publisher
Copernicus GmbH
ISSN
23667443
e-ISSN
23667451
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2630707193
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.