It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Tree-based and deep learning methods can automatically generate useful features. Not only can it enhance the original feature representation, but it can also learn to generate new features. This paper develops a strategy based on Light Gradient Boosting Machine (LightGBM or LGB) and Gated Recurrent Unit (GRU) to generate features to improve the expression ability of limited features. Moreover, a SARIMA-GRU prediction model considering the weekly periodicity is introduced. First, LightGBM is used to learn features and enhance the original features representation; secondly, GRU neural network is used to generate features; finally, the result ensemble is used as the input for prediction. Moreover, the SARIMA-GRU model is constructed for predicting. The GRU prediction consequences are revised by the SARIMA model that a better prediction can be obtained. The experiment was carried out with the data collected by Ride-hailing in Chengdu, and four predicted indicators and two performance indexes are utilized to evaluate the model. The results validate that the model proposed has significant improvements in the accuracy and performance of each component.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Kunming University of Science and Technology, School of Traffic Engineering, Kunming, China (GRID:grid.218292.2) (ISNI:0000 0000 8571 108X)