It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Goal-directed actions frequently require a balance between antagonistic processes (e.g., executing and inhibiting a response), often showing an interdependency concerning what constitutes goal-directed behavior. While an inter-dependency of antagonistic actions is well described at a behavioral level, a possible inter-dependency of underlying processes at a neuronal level is still enigmatic. However, if there is an interdependency, it should be possible to predict the neurophysiological processes underlying inhibitory control based on the neural processes underlying speeded automatic responses. Based on that rationale, we applied artificial intelligence and source localization methods to human EEG recordings from N = 255 participants undergoing a response inhibition experiment (Go/Nogo task). We show that the amplitude and timing of scalp potentials and their functional neuroanatomical sources during inhibitory control can be inferred by conditional generative adversarial networks (cGANs) using neurophysiological data recorded during response execution. We provide insights into possible limitations in the use of cGANs to delineate the interdependency of antagonistic actions on a neurophysiological level. Nevertheless, artificial intelligence methods can provide information about interdependencies between opposing cognitive processes on a neurophysiological level with relevance for cognitive theory.
An artificial intelligence algorithm trained on EEG recordings can be used to predict brain dynamics underpinning motor inhibition processes using neurophysiological information from motor execution.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Deutschland (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257)
2 Otto von Guericke University Magdeburg, Artificial Intelligence Lab, Institute for Intelligent Cooperating Systems, Faculty of Computer Science, Magdeburg, Germany (GRID:grid.5807.a) (ISNI:0000 0001 1018 4307)