It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We studied the physical, electronic transport and optical properties of a unique pentagonal PdQ2 (Q = S, Se) monolayers. The dynamic stability of 2Dwrinkle like-PdQ2 is proven by positive phonon frequencies in the phonon dispersion curve. The optimized structural parameters of wrinkled pentagonal PdQ2 are in good agreement with the available experimental results. The ultimate tensile strength (UTHS) was calculated and found that, penta-PdS2 monolayer can withstand up to 16% (18%) strain along x (y) direction with 3.44 GPa (3.43 GPa). While, penta-PdSe2 monolayer can withstand up to 17% (19%) strain along x (y) dirrection with 3.46 GPa (3.40 GPa). It is found that, the penta-PdQ2 monolayers has the semiconducting behavior with indirect band gap of 0.94 and 1.26 eV for 2D-PdS2 and 2D-PdSe2, respectively. More interestingly, at room temperacture, the hole mobilty (electron mobility) obtained for 2D-PdS2 and PdSe2 are 67.43 (258.06) cm2 V−1 s−1 and 1518.81 (442.49) cm2 V−1 s−1, respectively. In addition, I-V characteristics of PdSe2 monolayer show strong negative differential conductance (NDC) region near the 3.57 V. The Shockly-Queisser (SQ) effeciency prameters of PdQ2 monolayers are also explored and the highest SQ efficeinciy obtained for PdS2 is 33.93% at −5% strain and for PdSe2 is 33.94% at −2% strain. The penta-PdQ2 exhibits high optical absorption intensity in the UV region, up to 4.04 × 105 (for PdS2) and 5.28 × 105 (for PdSe2), which is suitable for applications in optoelectronic devices. Thus, the ultrathin PdQ2 monolayers could be potential material for next-generation solar-cell applications and high performance nanodevices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Gujarat University, Department of Physics, University School of Sciences, Ahmedabad, India (GRID:grid.411877.c) (ISNI:0000 0001 2152 424X)
2 St. Xavier’s College, Computational Materials and Nanoscience Group, Department of Physics and Electronics, Ahmedabad, India (GRID:grid.454329.d) (ISNI:0000 0004 0500 0851)
3 Uppsala University, Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala, Sweden (GRID:grid.8993.b) (ISNI:0000 0004 1936 9457); Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India (GRID:grid.462391.b) (ISNI:0000 0004 1769 8011)