Full Text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Luu- ja lihaskonna ülekoormatusest tingitud füüsiline väsimus alandab töötaja elukvaliteeti ning suurendab sellest tulenevaid kulusid nii tööandjale kui ka tervishoiusüsteemile. Toetav ekso- ehk välisskelett vöib olla abiks probleemi lahendamisel. Selliste seadmete puuduseks on nende jäikus ja ebamugavus ning akude lühike vastupidavus. Pehmerobootilised eksoskeletid vöimaldavad neid probleeme lahendada, suurendades süsteemi paindlikkust, olles samaaegselt nii seadme käitaja kui ka ühenduslüli kasutajaga. Peamine probleem nende projekteerimisel on leida kompromiss energia säästmise ja kandja toetamise vahel. Süsteemi ülesanne on kasutaja tegevuste tuvastamine reaalajas ning toetust vajavate liigutuste eristamine vähem olulistest. Antud uuringus analüüsiti ja modifitseeriti 'human activity recognition' (HAR) algoritme inimeste igapäevaste liigutuste alusel. Tulemused kanti üle tööstuslikesse tingimustesse. Uuringus selgitati välja köige levinumad probleemid inertsiaalsetel möötühikutel pöhineval HAR-il ja vörreldi köige paremini toimivaid algoritme. Töö tulemust saab rakendada HAR algoritmide kasutamiseks pehmerobootoliste välisskelettide täiustamiseks.

Alternate abstract:

Abstract. Absence from work caused by overloading the musculoskeletal system lowers the life quality of the worker and entails unnecessary costs for both the employer and the health system. Soft-robotic exoskeletons offer a possibility to overcome these problems by increasing the system flexibility, not limiting the supported Degrees of Freedom and being simultaneously an actuator and a joint. Since such exoskeletons can only be designed for using power when supporting the wearer, battery lifetime can be increased by covering only those actions for which support is needed. As regards controls, a major difficulty lies in finding a compromise between saving energy and supporting the wearer. However, an action-depending control can reduce the supported actions to only relevant ones and increase battery lifetime. The system conditions include detection of user actions in real time and distinguishing between actions requiring and not requiring support. We contributed an analysis and modification of human action recognition (HAR) benchmark algorithms from activities of daily living, transferred them onto industrial use cases and made the models compatible with embedded computers for real-time recognition on soft exoskeletons. We identified the most common challenges for inertial measurement unit based HAR and compared the best-performing algorithms using a newly recorded dataset of overhead car assembly for industrial relevance. By introducing orientation estimation, F1-scores could be increased by up to 0.04. With an overall F1-score without a Null class of up to 0.883, we were able to lay the foundation for using HAR for action dependent force support.

Details

Title
Inertial measurement unit based human action recognition for soft-robotic exoskeletons
Author
Kuschan, Jan; Burgdorff, Moritz; Filaretov, Hristo; Krüger, Jorg
Pages
484-492
Publication year
2021
Publication date
2021
Publisher
Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)
ISSN
17366046
e-ISSN
17367530
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2631906747
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.