Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Methionine, as an essential amino acid, play roles in antioxidant defense and the regulation of immune responses. This study was designed to determine the effects and mechanisms of increased consumption of methionine by sows and piglets on the capacity of the progeny to counteract lipopolysaccharide (LPS) challenge-induced injury in the liver and spleen of piglets. Primiparous sows (n = 10/diet) and their progeny were fed a diet that was adequate in sulfur amino acids (CON) or CON + 25% total sulfur amino acids as methionine from gestation day 85 to postnatal day 35. A total of ten male piglets were selected from each treatment and divided into 2 groups (n = 5/treatment) for a 2 × 2 factorial design [diets (CON, Methionine) and challenge (saline or LPS)] at 35 d old. After 24 h challenge, the piglets were euthanized to collect the liver and spleen for the histopathology, redox status, and gene expression analysis. The histopathological results showed that LPS challenge induced liver and spleen injury, while dietary methionine supplementation alleviated these damages that were induced by the LPS challenge. Furthermore, the LPS challenge also decreased the activities of GPX, SOD, and CAT and upregulated the mRNA and(or) protein expression of TLR4, MyD88, TRAF6, NOD1, NOD2, NF-kB, TNF-α, IL-8, p53, BCL2, and COX2 in the liver and (or) spleen. The alterations of GPX and SOD activities and the former nine genes were prevented or alleviated by the methionine supplementation. In conclusion, the maternal and neonatal dietary supplementation of methionine improved the ability of piglets to resist LPS challenge-induced liver and spleen injury, potentially through the increased antioxidant capacity and inhibition of TLR4 and NOD signaling pathway.

Details

Title
Increased Ingestion of Hydroxy-Methionine by Both Sows and Piglets Improves the Ability of the Progeny to Counteract LPS-Induced Hepatic and Splenic Injury with Potential Regulation of TLR4 and NOD Signaling
Author
Liu, Meng 1 ; Zhang, Ying 1 ; Ke-Xin Cao 1 ; Ren-Gui, Yang 2 ; Bao-Yang, Xu 1 ; Wan-Po, Zhang 3 ; Batonon-Alavo, Dolores I 4 ; Shu-Jun, Zhang 5 ; Lv-Hui, Sun 1 

 Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (M.L.); [email protected] (Y.Z.); [email protected] (K.-X.C.) 
 Tang Ren Shen Group Co., Ltd., Zhuzhou 412007, China; [email protected] 
 College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; [email protected] 
 Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160 Antony, France; [email protected] 
 Key Laboratory of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; [email protected] 
First page
321
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632196096
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.