Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, three slots containing an anode chamber, a cathode chamber, and a middle pole chamber were designed by applying the Hittorf method, and a two-way coupling model of the flow field and electric field was established using the COMSOL system. The electric field distribution in the constructed model was simulated, and the model reliability, boundary conditions, and related parameters were verified. A three-chamber tank was utilized to investigate the migration numbers change rule and migration mechanism of Y(III) ions in the AlF3–(Li,Na)F system. The migration number of Y(III) ions in the AlF3–(Li,Na)F–Y2O3 molten salt linearly increased from 0.70 to 0.80 with an increase in temperature from 900 to 1000 °C. When the (Li,Na)F/AlF3 molar ratio was between 2.0 and 2.5, the migration number of Y(III) ions was relatively constant, and its average value was approximately 0.75. Meanwhile, at (Li,Na)F/AlF3 molar ratios higher than 2.5, the migration number of Y(III) ions linearly decreased from 0.75 to 0.45. Finally, in the current density range of 1.0–2.0 A/cm2, the migration number of Y(III) ions increased almost linearly from 0.65 to 0.85.

Details

Title
Y(III) Ion Migration in AlF3–(Li,Na)F–Y2O3 Molten Salt
Author
Hao, Tingting 1 ; Wang, Xu 2 ; Zhai, Yuchun 3 ; Chang, Yunlong 1 

 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China; [email protected] (T.H.); [email protected] (Y.C.) 
 Faculty of material Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China 
 School of Metallurgical Engineering, Northeastern University, Shenyang 110006, China; [email protected] 
First page
2200
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632199434
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.