Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

On 2 April 2007, a strong bow echo struck southern Taiwan, with a peak surface wind speed of 26 m s−1. On observation, the rear inflow jet (RIJ) was located at the northern flank and only one anticyclonic vortex dominated behind the bow structure. This case was different from commonly occurring cyclonic–anticyclonic pairs of bookend vortices, and was investigated through data analysis, model simulation, and vorticity budget diagnostics. The present bow echo formed at the leading edge of a cold front, with favorable ingredients of instability, large west-southwesterly vertical wind shear, and dry air aloft. Farther behind the front, however, stable conditions could not support deep convection and the portion north of the RIJ was therefore missing. Within a frontal flow structure, the developing mechanism of the anticyclonic vortex also differed from typical cases. As the low-level (west-southwesterly) vertical shear pointed from right to left of the line, and the tilting effect of updrafts generated positive (negative) vorticity at the front (rear) side. South of and below the RIJ, the anticyclonic vorticity was enhanced by the stretching and tilting effect of system-generated horizontal vorticity via a sinking motion. These sources of vorticity were then advected downward and southwestward by the postfrontal flow near the surface.

Details

Title
Study of an Asymmetric and Anticyclonic Bow Echo Near Taiwan
Author
Wang, Chung-Chieh 1 ; Jou-Ping Hou 2 ; Chun-Hsiang Tseng 3 ; Pao-Liang, Chang 4 ; Lee, Dong-In 5 

 Department of Earth Sciences, National Taiwan Normal University, Taipei 11677, Taiwan; [email protected] 
 Department of Environmental Information and Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 33551, Taiwan 
 Department of Atmospheric Sciences, Chinese Culture University, Taipei 11114, Taiwan; [email protected]; Central Weather Bureau, Taipei 100006, Taiwan; [email protected] 
 Central Weather Bureau, Taipei 100006, Taiwan; [email protected] 
 Department of Environmental Atmospheric Sciences, Pukyong National University, Busan 48513, Korea; [email protected] 
First page
331
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632244681
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.