Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Computational models of the basal ganglia (BG) provide a mechanistic account of different phenomena observed during reinforcement learning tasks performed by healthy individuals, as well as by patients with various nervous or mental disorders. The aim of the present work was to develop a BG model that could represent a good compromise between simplicity and completeness. Based on more complex (fine-grained neural network, FGNN) models, we developed a new (coarse-grained neural network, CGNN) model by replacing layers of neurons with single nodes that represent the collective behavior of a given layer while preserving the fundamental anatomical structures of BG. We then compared the functionality of both the FGNN and CGNN models with respect to several reinforcement learning tasks that are based on BG circuitry, such as the Probabilistic Selection Task, Probabilistic Reversal Learning Task and Instructed Probabilistic Selection Task. We showed that CGNN still has a functionality that mirrors the behavior of the most often used reinforcement learning tasks in human studies. The simplification of the CGNN model reduces its flexibility but improves the readability of the signal flow in comparison to more detailed FGNN models and, thus, can help to a greater extent in the translation between clinical neuroscience and computational modeling.

Details

Title
Coarse-Grained Neural Network Model of the Basal Ganglia to Simulate Reinforcement Learning Tasks
Author
Drapała, Jarosław 1   VIAFID ORCID Logo  ; Frydecka, Dorota 2   VIAFID ORCID Logo 

 Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego Street 27, 50-370 Wroclaw, Poland 
 Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; [email protected] 
First page
262
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632367347
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.