Full Text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The seasonality and interannual variability of terrestrial carbonyl sulfide (COS) fluxes are poorly constrained. We present the first easy-to-use parameterization for the net COS forest sink based on the longest existing eddy covariance record from a boreal pine forest, covering 32 months over 5 years. Fluxes from hourly to yearly scales are reported, with the aim of revealing controlling factors and the level of interannual variability. The parameterization is based on the photosynthetically active radiation, vapor pressure deficit, air temperature, and leaf area index. Wavelet analysis of the ecosystem fluxes confirmed earlier findings from branch-level fluxes at the same site and revealed a 3 h lag between COS uptake and air temperature maxima at the daily scale, whereas no lag between radiation and COS flux was found. The spring recovery of the flux after the winter dormancy period was mostly governed by air temperature, and the onset of the uptake varied by 2 weeks. For the first time, we report a significant reduction in ecosystem-scale COS uptake under a large water vapor pressure deficit in summer. The maximum monthly and weekly median COS uptake varied by 26 % and 20 % between years, respectively. The timing of the latter varied by 6 weeks. The fraction of the nocturnal uptake remained below 21 % of the total COS uptake. We observed the growing season (April–August) average net flux of COS totaling -58.0 gSha-1 with 37 % interannual variability. The long-term flux observations were scaled up to evergreen needleleaf forests (ENFs) in the whole boreal region using the Simple Biosphere Model Version 4 (SiB4). The observations were closely simulated using SiB4 meteorological drivers and phenology. The total COS uptake by boreal ENFs was in line with a missing COS sink at high latitudes pointed out in earlier studies.

Details

Title
Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest
Author
Vesala, Timo 1 ; Kohonen, Kukka-Maaria 2   VIAFID ORCID Logo  ; Kooijmans, Linda M J 3   VIAFID ORCID Logo  ; Praplan, Arnaud P 4   VIAFID ORCID Logo  ; Foltýnová, Lenka 5 ; Kolari, Pasi 2 ; Kulmala, Markku 2   VIAFID ORCID Logo  ; Bäck, Jaana 6   VIAFID ORCID Logo  ; Nelson, David 7 ; Yakir, Dan 8   VIAFID ORCID Logo  ; Zahniser, Mark 7 ; Mammarella, Ivan 2   VIAFID ORCID Logo 

 Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland; Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland; Scientific and Educational Centre “Dynamics of the Environment and Global Climate Change”, Yugra State University, Khanty-Mansiysk, Russia 
 Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland 
 Meteorology and Air Quality, Wageningen University & Research, Wageningen, the Netherlands 
 Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland 
 Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic 
 Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland 
 Aerodyne Research Inc., Billerica, MA, USA 
 Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel 
Pages
2569-2584
Publication year
2022
Publication date
2022
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632567491
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.