It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the present work, we propose a novel modulation scheme for 5G wireless communication system. Our contribution is to combine PM-OFDM (Phase Modulation Orthogonal Frequency Division Multiplexing) and CDMA (Code Division Multiple Access) to exploit their distinctive advantages. On the one hand, PM-OFDM is an effective technique to combat multipath fading effects. On the other hand, CDMA can serve multiple users who are using the same resources of time/frequency. The aim is to make a combination of PM-OFDM and CDMA techniques. In this paper, the OFDM-CDMA scheme and its PAPR (Peak-to-Average Power Ratio) statistics are reviewed. In this paper, the proposed scheme PM-OFDM-CDMA is described and its performances in terms of PAPR, power spectral density, and BER (Bit Error Rate) are analyzed. Moreover, MMSE (Minimum Mean Square Error) equalizer is used to avoid multipath and noise effects simultaneously. The simulation through AWGN (Additive white Gaussian noise) and Rayleigh channels is performed using MATLAB. From the simulation results, we observed that PM-OFDM-CDMA is an efficient technique in terms of energy consumption (PAPR = 0dB). Besides, CE-OFDM-CDMA offers high spectral efficiency with low BER due to its low PAPR. In CE-OFDM-CDMA method, the shape of the spectrum varies according to the value of the modulation index h. The band occupied by the spectrum increases with the value of h. Therefore, CE-OFDM-CDMA could be considered as a suitable technique for 5G applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer