Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The sequential meal pattern has recently received more attention because it reflects a phycological diet style for human beings. The present study investigated the effects of the second lipid meal on lymphatic lipid absorption and transport in adult rats following a previous lipid meal. Using the well-established lymph fistula model, we found that the second lipid meal significantly increased the lymphatic output of triglycerides, cholesterol, phospholipids, and non-esterified fatty acids compared with a single lipid meal. Besides that, the time reaching the peak of each lipid output was significantly faster compared with the first lipid meal. Additionally, the second lipid meal significantly increased the lymphatic output of apolipoprotein A-IV (ApoA-IV), but not apolipoprotein B-48 (ApoB-48) or apolipoprotein A-I (ApoA-I). Interestingly, the triglyceride/apoB-48 ratio was significantly increased after the second lipid meal, indicating the increased chylomicron size in the lymph. Finally, the second lipid meal increased the lymphatic output of rat mucosal mast cell protease II (RMCPII). No change was found in the expression of genes related to the permeability of lymphatic lacteals, including vascular endothelial growth factor-A (Vegfa), vascular endothelial growth factor receptor 1 (Flt1), and Neuropilin1 (Nrp1). Collectively, the second lipid meal led to the rapid appearance of bigger-sized chylomicrons in the lymph. It also increased the lymphatic output of various lipids and apoA-IV, and mucosal mast cell activity in the intestine.

Details

Title
Impact of Sequential Lipid Meals on Lymphatic Lipid Absorption and Transport in Rats
Author
Zhu, Qi 1   VIAFID ORCID Logo  ; Yang, Qing 1 ; Shen, Ling 1 ; Qu, Jie 1 ; Xu, Meifeng 1 ; Wang, David Q-H 2 ; Tso, Patrick 1 ; Liu, Min 1 

 Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; [email protected] (Q.Z.); [email protected] (Q.Y.); [email protected] (L.S.); [email protected] (J.Q.); [email protected] (M.X.); [email protected] (P.T.) 
 Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; [email protected] 
First page
277
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632745046
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.