It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Airborne LiDAR technology has become an essential tool in archaeology during the last two decades since it allows archaeologists to measure and map items or structures that would otherwise be hidden under vegetation. In order to detect and characterise the archaeological evidence, it is a common practice to extract accurate digital terrain models (DTM) by filtering out the vegetation from Airborne Laser Scanning (ALS) datasets. Although previous approaches have performed well in ALS filtration, they are still subject to several variables (flight height, forest cover, type of sensors utilised, etc.) and are frequently integrated into expensive commercial software or customised for specific locations. This study presents a workflow for treating ALS archaeological datasets using machine learning algorithms for both filtering the vegetation and detecting hidden structures. The workflow is applied to two different archaeological environments (in terms of structures, vegetation, landscape, point density), and results demonstrate that the pipeline is rapid and accurate, and the prediction model is transferable.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; Centre of Geotechnologies, University of Siena, Italy
2 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy
3 Department of History and Cultural Heritage, University of Siena, Italy; Department of History and Cultural Heritage, University of Siena, Italy