Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The adoption of sustainable methods for herbivore pest control has become mandatory in Europe, with the EU directive 128/09. Since then, stringent evaluation protocols have been applied to insecticides and several molecules (that are suspected to be unsafe for the environment or human health) have been banned. Hence, the evaluation of sustainable methods, e.g., preventive tools based on the manipulation of pest behaviour, must be considered. Using field and laboratory assays, we tested the efficacy of different products in preventing infestation of a key pest of olive orchards, the olive fruit fly Bactrocera oleae. Our findings may be useful for the development of control strategies in integrated pest management (IPM) and organic agriculture.

Abstract

The olive fruit fly, Bactrocera oleae, is the key pest of olive trees in several areas of the world. Given the need for the development of sustainable control methods, preventive tools, based on the manipulation of pest behaviour, must be considered. Here, under field and laboratory conditions, we tested the efficacy of different products in preventing B. oleae infestation. A field trial was conducted, from July to November 2020, in an olive orchard located in Central Italy. A table olive variety was selected and sprayed with rock powder, propolis, the mixture of both, copper oxychloride, or water (control). All treatments, except propolis, caused a reduction of B. oleae oviposition in olives, compared to the control. The mixture allowed the strongest reduction of fly infestation throughout the season, suggesting a synergistic effect. Behavioural no-choice assays were conducted to better understand the effects of treatments on B. oleae females. Compared to the control, females showed a lower preference for the central area of an arena containing an olive twig bearing two olive fruits, fully developed, but still green, treated with rock powder, plus propolis mixture. For all treatments, B. oleae showed lower oviposition events, suggesting deterrence to oviposition. Our results indicate that the tested products may have value against B. oleae, within integrated pest management (IPM) and organic agriculture.

Details

Title
Field and Laboratory Efficacy of Low-Impact Commercial Products in Preventing Olive Fruit Fly, Bactrocera oleae, Infestation
Author
Daher, Elissa  VIAFID ORCID Logo  ; Cinosi, Nicola  VIAFID ORCID Logo  ; Chierici, Elena  VIAFID ORCID Logo  ; Rondoni, Gabriele  VIAFID ORCID Logo  ; Famiani, Franco  VIAFID ORCID Logo  ; Conti, Eric  VIAFID ORCID Logo 
First page
213
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633001445
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.