Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Digital twin (DT) is an emerging key technology that enables sophisticated interaction between physical objects and their virtual replicas, with applications in almost all engineering fields. Although it has recently gained significant attraction in both industry and academia, so far it has no unanimously adopted and established definition. One may therefore come across many definitions of what DT is and how to create it. DT can be designed for an existing process and help us to improve it. Another possible approach is to create the DT for a brand new device. In this case, it can reveal how the system would behave in given conditions or when controlled. One of purposes of a DT is to support the commissioning of devices. So far, recognized and used techniques to make the commissioning more effective are virtual commissioning and hybrid commissioning. In this article, we present a concept of hybrid virtual commissioning. This concept aims to point out the possibility to use real devices already at the stage of virtual commissioning. It is introduced in a practical case study of a robotic manipulator with machine vision controlled with a programmable logic controller in a pick-and-place application. This study presents the benefits that stem from the proposed approach and also details when it is convenient to use it.

Details

Title
Hybrid Virtual Commissioning of a Robotic Manipulator with Machine Vision Using a Single Controller
Author
Noga, Marek  VIAFID ORCID Logo  ; Juhás, Martin  VIAFID ORCID Logo  ; Gulan, Martin  VIAFID ORCID Logo 
First page
1621
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633175988
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.