Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Snow is the dominant form of precipitation and the main cryospheric feature of the High Arctic (HA) covering its land, sea, lake and river ice surfaces for a large part of the year. The snow cover in the HA is involved in climate feedbacks that influence the global climate system, and greatly impacts the hydrology and the ecosystems of the coldest biomes of the Northern Hemisphere. The ongoing global warming trend and its polar amplification is threatening the long-term stability of the snow cover in the HA. This study presents an extensive review of the literature on observed and projected snow cover conditions in the High Arctic region. Several key snow cover metrics were reviewed, including snowfall, snow cover duration (SCD), snow cover extent (SCE), snow depth (SD), and snow water equivalent (SWE) since 1930 based on in situ, remote sensing and simulations results. Changes in snow metrics were reviewed and outlined from the continental to the local scale. The reviewed snow metrics displayed different sensitivities to past and projected changes in precipitation and air temperature. Despite the overall increase in snowfall, both observed from historical data and projected into the future, some snow cover metrics displayed consistent decreasing trends, with SCE and SCD showing the most widespread and steady decreases over the last century in the HA, particularly in the spring and summer seasons. However, snow depth and, in some regions SWE, have mostly increased; nevertheless, both SD and SWE are projected to decrease by 2030. By the end of the century, the extent of Arctic spring snow cover will be considerably less than today (10–35%). Model simulations project higher winter snowfall, higher or lower maximum snow depth depending on regions, and a shortened snow season by the end of the century. The spatial pattern of snow metrics trends for both historical and projected climates exhibit noticeable asymmetry among the different HA sectors, with the largest observed and anticipated changes occurring over the Canadian HA.

Details

Title
Historical Trends and Projections of Snow Cover over the High Arctic: A Review
Author
Hadi Mohammadzadeh Khani 1 ; Kinnard, Christophe 1   VIAFID ORCID Logo  ; Lévesque, Esther 1   VIAFID ORCID Logo 

 Centre de Recherche sur les Interactions Bassins Versants—Écosystèmes Aquatiques (RIVE), Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Quebec, QC G8Z 4M3, Canada; [email protected] (C.K.); [email protected] (E.L.); Centre d’Études Nordiques (CEN), Quebec, QC G1V 0A6, Canada 
First page
587
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633204820
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.