Abstract

The measurement and control of light field oscillations enable the study of ultrafast phenomena on sub-cycle time scales. Electro-optic sampling (EOS) is a powerful field characterization approach, in terms of both sensitivity and dynamic range, but it has not reached beyond infrared frequencies. Here, we show the synthesis of a sub-cycle infrared-visible pulse and subsequent complete electric field characterization using EOS. The sampled bandwidth spans from 700 nm to 2700 nm (428 to 110 THz). Tailored electric-field waveforms are generated with a two-channel field synthesizer in the infrared-visible range, with a full-width at half-maximum duration as short as 3.8 fs at a central wavelength of 1.7 µm (176 THz). EOS detection of the complete bandwidth of these waveforms extends it into the visible spectral range. To demonstrate the power of our approach, we use the sub-cycle transients to inject carriers in a thin quartz sample for nonlinear photoconductive field sampling with sub-femtosecond resolution.

A continuum spanning from 300 and 3000 nm is used to synthesize a single-cycle field transient and measure its waveform through electro-optic sampling, speeding up this sensitive technique so that it can access the electric field of visible light.

Details

Title
Electro-optic characterization of synthesized infrared-visible light fields
Author
Ridente Enrico 1 ; Mamaikin Mikhail 2 ; Najd, Altwaijry 2 ; Zimin Dmitry 2 ; Kling, Matthias F 3   VIAFID ORCID Logo  ; Pervak Vladimir 4 ; Weidman, Matthew 2 ; Krausz Ferenc 2 ; Karpowicz, Nicholas 5   VIAFID ORCID Logo 

 Max-Planck-Institut für Quantenoptik, Garching, Germany (GRID:grid.450272.6) (ISNI:0000 0001 1011 8465); Fakultät für Physik, Ludwig-Maximilians-Universität, Garching, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X); University of California, Department of Chemistry, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
 Max-Planck-Institut für Quantenoptik, Garching, Germany (GRID:grid.450272.6) (ISNI:0000 0001 1011 8465); Fakultät für Physik, Ludwig-Maximilians-Universität, Garching, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X) 
 Max-Planck-Institut für Quantenoptik, Garching, Germany (GRID:grid.450272.6) (ISNI:0000 0001 1011 8465); Fakultät für Physik, Ludwig-Maximilians-Universität, Garching, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X); SLAC National Accelerator Laboratory, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771) 
 Max-Planck-Institut für Quantenoptik, Garching, Germany (GRID:grid.450272.6) (ISNI:0000 0001 1011 8465); Fakultät für Physik, Ludwig-Maximilians-Universität, Garching, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X); Ultrafast Innovations GmbH, Garching, Germany (GRID:grid.5252.0) 
 Max-Planck-Institut für Quantenoptik, Garching, Germany (GRID:grid.450272.6) (ISNI:0000 0001 1011 8465); CNR NANOTEC Institute of Nanotechnology, via Monteroni, Lecce, Italy (GRID:grid.494551.8) (ISNI:0000 0004 6477 0549) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2635105782
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.