Abstract

Autism spectrum disorder (ASD), a group of neurodevelopmental disorders characterized by social communication deficits and stereotyped behaviors, may be associated with changes to the gut microbiota. However, how gut commensal bacteria modulate brain function in ASD remains unclear. Here, we used chromodomain helicase DNA-binding protein 8 (CHD8) haploinsufficient mice as a model of ASD to elucidate the pathways through which the host and gut microbiota interact with each other. We found that increased levels of amino acid transporters in the intestines of the mouse model of ASD contribute to the high level of serum glutamine and the increased excitation/inhibition (E/I) ratio in the brain. In addition, elevated α-defensin levels in the haploinsufficient mice resulted in dysregulation of the gut microbiota characterized by a reduced abundance of Bacteroides. Furthermore, supplementation with Bacteroides uniformis improved the ASD-like behaviors and restored the E/I ratio in the brain by decreasing intestinal amino acid transport and the serum glutamine levels. Our study demonstrates associations between changes in the gut microbiota and amino acid transporters, and ASD-like behavioral and electrophysiology phenotypes, in a mouse model.

The gut microbiota has been shown to modulate the neural function via the microbiota-gut-brain axis. Here, the authors show that Bacteroides uniformis, a gut commensal bacterium, restores the ASD-like phenotypes by reducing intestinal amino acid transport in an ASD mouse model.

Details

Title
Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8+/− mouse model of ASD-like behavior
Author
You, Yu 1 ; Zhang, Bing 2 ; Ji Peifeng 1 ; Zuo Zhenqiang 1 ; Huang Yongxi 1 ; Wang, Ning 1 ; Liu, Chang 3   VIAFID ORCID Logo  ; Shuang-Jiang, Liu 3   VIAFID ORCID Logo  ; Zhao Fangqing 4   VIAFID ORCID Logo 

 Chinese Academy of Sciences, Beijing Institutes of Life Science, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 Chinese Academy of Sciences, Beijing Institutes of Life Science, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
 Chinese Academy of Sciences, State Key Laboratory of Microbial Resources, Institute of Microbiology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 Chinese Academy of Sciences, Beijing Institutes of Life Science, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); University of Chinese Academy of Sciences, Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, Hangzhou, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); Chinese Academy of Sciences, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); Chinese Academy of Sciences, Center for Excellence in Animal Evolution and Genetics, Kunming, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2635333313
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.