It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Horizontal gene transfer facilitates dissemination of favourable traits among bacteria. However, foreign DNA can also reduce host fitness: incoming sequences with a higher AT content than the host genome can misdirect transcription. Xenogeneic silencing proteins counteract this by modulating RNA polymerase binding. In this work, we compare xenogeneic silencing strategies of two distantly related model organisms: Escherichia coli and Bacillus subtilis. In E. coli, silencing is mediated by the H-NS protein that binds extensively across horizontally acquired genes. This prevents spurious non-coding transcription, mostly intragenic in origin. By contrast, binding of the B. subtilis Rok protein is more targeted and mostly silences expression of functional mRNAs. The difference reflects contrasting transcriptional promiscuity in E. coli and B. subtilis, largely attributable to housekeeping RNA polymerase σ factors. Thus, whilst RNA polymerase specificity is key to the xenogeneic silencing strategy of B. subtilis, transcriptional promiscuity must be overcome to silence horizontally acquired DNA in E. coli.
Bacteria use specific silencing proteins to prevent spurious transcription of horizontally acquired DNA. Here, Forrest et al. describe differences in silencing strategies between E. coli and Bacillus subtilis, driven by the respective specificities of the silencing protein and the RNA polymerase in each organism.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 University of Birmingham, School of Biosciences, Edgbaston, UK (GRID:grid.6572.6) (ISNI:0000 0004 1936 7486)
2 Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands (GRID:grid.5132.5) (ISNI:0000 0001 2312 1970)
3 Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands (GRID:grid.5132.5) (ISNI:0000 0001 2312 1970); Leiden University, Centre for Microbial Cell Biology, Leiden, The Netherlands (GRID:grid.5132.5) (ISNI:0000 0001 2312 1970)