It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Interacting subsystems are commonly described by networks, where multimodal behaviour found in most natural or engineered systems found recent extension in form of multilayer networks. Since multimodal interaction is often not dictated by network topology alone and may manifest in form of cross-layer information exchange, multilayer network flow becomes of relevant further interest. Rationale can be found in most interacting subsystems, where a form of multimodal flow across layers can be observed in e.g., chemical processes, energy networks, logistics, finance, or any other form of conversion process relying on the laws of conservation. To this end, the formal notion of heterogeneous network flow is proposed, as a multilayer flow function aligned with the theory of network flow. Furthermore, dynamic equivalence is established with the framework of Petri nets, as the baseline model of concurrent event systems. Application of the resulting multilayer Laplacian flow and flow centrality is presented, along with graph learning based inference of multilayer relationships over multimodal data. On synthetic data the proposed framework demonstrates benefits of multimodal flow derivation in critical component identification. It also displays applicability in relationship inference (learning based function approximation) on multimodal time series. On real-world data the proposed framework provides, among others, multimodal flow interpretation of U.S. economic activity, uncovering underlying empirical steady state probability distribution, as well as inherent network (economic) robustness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Imperial College London, Department of Electrical and Electronic Engineering, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111)
2 Imperial College London, Department of Electrical and Electronic Engineering, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111); University of Florence, Department of Information Engineering, Florence, Italy (GRID:grid.8404.8) (ISNI:0000 0004 1757 2304)