Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years personalized medicine reached an increasing importance, especially in the design of oncological therapies. In particular, the development of patients’ profiling strategies suggests the possibility of promising rewards. In this work, we present an explainable artificial intelligence (XAI) framework based on an adaptive dimensional reduction which (i) outlines the most important clinical features for oncological patients’ profiling and (ii), based on these features, determines the profile, i.e., the cluster a patient belongs to. For these purposes, we collected a cohort of 267 breast cancer patients. The adopted dimensional reduction method determines the relevant subspace where distances among patients are used by a hierarchical clustering procedure to identify the corresponding optimal categories. Our results demonstrate how the molecular subtype is the most important feature for clustering. Then, we assessed the robustness of current therapies and guidelines; our findings show a striking correspondence between available patients’ profiles determined in an unsupervised way and either molecular subtypes or therapies chosen according to guidelines, which guarantees the interpretability characterizing explainable approaches to machine learning techniques. Accordingly, our work suggests the possibility to design data-driven therapies to emphasize the differences observed among the patients.

Details

Title
A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence
Author
Amoroso, Nicola 1   VIAFID ORCID Logo  ; Pomarico, Domenico 2   VIAFID ORCID Logo  ; Fanizzi, Annarita 2 ; Didonna, Vittorio 2 ; Giotta, Francesco 3 ; Daniele La Forgia 4   VIAFID ORCID Logo  ; Latorre, Agnese 3   VIAFID ORCID Logo  ; Monaco, Alfonso 5   VIAFID ORCID Logo  ; Pantaleo, Ester 6   VIAFID ORCID Logo  ; Petruzzellis, Nicole 2 ; Tamborra, Pasquale 2 ; Zito, Alfredo 7   VIAFID ORCID Logo  ; Lorusso, Vito 3 ; Bellotti, Roberto 5 ; Massafra, Raffaella 2 

 INFN, Sezione di Bari, Via G. Amendola 173, 70126 Bari, Italy; [email protected] (N.A.); [email protected] (A.M.); [email protected] (R.B.); Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, 70126 Bari, Italy 
 Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; [email protected] (D.P.); [email protected] (V.D.); [email protected] (N.P.); [email protected] (P.T.); [email protected] (R.M.) 
 Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; [email protected] (F.G.); [email protected] (A.L.); [email protected] (V.L.) 
 Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; [email protected] 
 INFN, Sezione di Bari, Via G. Amendola 173, 70126 Bari, Italy; [email protected] (N.A.); [email protected] (A.M.); [email protected] (R.B.); Dipartimento di Fisica, Università degli Studi di Bari, Via G. Amendola 173, 70126 Bari, Italy; [email protected] 
 Dipartimento di Fisica, Università degli Studi di Bari, Via G. Amendola 173, 70126 Bari, Italy; [email protected] 
 Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; [email protected] 
First page
4881
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2635418661
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.