It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Representation Learning (RL) aims to convert data into low-dimensional and dense real-valued vectors, so as to realize reasoning in vector space. RL is one of the important research contents in the analysis of health data. This paper systematically reviews the latest research on Electronic Health Records (EHR) RL. We searched the Web of Science, Google Scholar, and Association for Computing Machinery Digital Library for papers involving EHR RL. On the basis of literature review, we propose a new taxonomy to categorize the state-of-the-art EHR RL methods into three categories: statistics learning-based RL methods, knowledge RL methods and graph RL methods. We analyze and summarize their characteristics according to the input data form and underlying learning mechanisms. In addition, we provide evaluation strategies to verify the quality of EHR representations from both intrinsic and extrinsic perspectives. Finally, we put forward three promising research directions to promote future research. Overall, this survey aims to provide a profound overview of state-of-the-art developments in the field of EHR RL and to help researchers find the most appropriate methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Computer Science and Technology, Huaqiao University , China
2 Research Department, ZoeSoft Corp. Ltd. , China