It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A user connects to hundreds of remote networks daily, some of which can be corrupted by malicious sources. To overcome this problem, a variety of Network Intrusion Detection systems are built, which aim to detect harmful networks before they establish a connection with the user’s local system. This paper focuses on proposing a model for Anomaly based Network Intrusion Detection systems (NIDS), by performing comparisons of various Supervised Learning Algorithms on metric of their accuracy. Two datasets were used and analysed, each having different properties in terms of the volume of data they contain and their use cases. Feature engineering was done to retrieve the most optimum features of both the datasets and only the top 25% best features were used to build the models – a smaller subset of features not only aids in decreasing the capital required to collect the data but also gets rid of redundant and noisy information. Two different splicing methods were used to train the data and each method showed different trends on the ML models.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electronics and Communications, Manipal Institute of Technology , Manipal, Karnataka , India