Abstract

Ion extraction time is one of the key parameters for an ion extraction process. Particle-in-cell (PIC) simulation can provide a detailed description on the charged-particle behaviours during the ion extraction process in a decaying plasma. However, the PIC modelling is a very time-consuming task with very small space step (~ Debye length) and time step (~ inverse of plasma frequency), as well as a massive number of macro-particles, especially for the cases in multi-dimensions and large geometrical sizes. In this paper, based on the sheath expansion and ion-acoustic rarefaction wave propagation model, a similarity relation of ion extraction time with different geometrical sizes of the ion extraction regions is established. The theoretical analysis shows that, by changing the magnitude of the externally applied voltage to keep the ion extraction flux equal, the ion extraction time is proportional to the geometrical size ratio. Then, the PIC simulations on the ion extraction process are conducted, which show that there exists a good consistency with the theoretical analysis and previous experimental data. This research is helpful for promoting numerical simulations facing actual ion extraction processes with large geometrical sizes and provides theoretical guidance for improving the ion extraction efficiencies in applications.

Details

Title
Analysis and particle-in-cell simulation on the similarity relation during an ion extraction process
Author
Yao-Ting, Wang 1 ; Chen, Jian 1 ; He-Ping, Li 1 ; Dong-Jun, Jiang 1 ; Ming-Sheng, Zhou 1 

 Department of Engineering Physics, Tsinghua University , Beijing 100084 
First page
012013
Publication year
2022
Publication date
Jan 2022
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2635867578
Copyright
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.