This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), are a group of incurable heterogeneous diseases. They are characterized by the gradual degeneration of the function and structure of neurons and overactivation of microglia in the central nervous system (CNS) [1]. To date, the accurate molecular mechanisms related to the pathogenesis and progression of neurodegenerative diseases are not well elucidated [2]. Although each neurodegenerative disease exhibits the respective pathological features, they also share some common molecular mechanisms, such as the aggregation of misfolded proteins, oxidative damage, mitochondrial dysfunction, DNA damage, neuroexcitotoxicity, biometal dyshomeostasis, neurotrophic impairment, and neuroinflammatory responses [3, 4]. Among them, the aggregated misfolded proteins have become the pathological hallmarks in many neurodegenerative diseases. For example, the extracellular deposition of amyloid-β (Aβ) fibrils and intracellular hyperphosphorylated Tau are found in the brain of AD. In addition, Lewy bodies containing α-synuclein, mutant huntingtin (mHtt), mutant superoxide dismutase 1 (SOD1), and TAR DNA-Binding Protein 43 (TDP-43) are closely associated with the pathogenesis of PD, HD, and ALS, respectively [5]. It is known to us that these misfolded proteins are increasingly accumulated with ageing and induce oxidative stress by generating excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS), which is accompanied by mitochondrial dysfunction, DNA damage, neuroexcitotoxicity, and ultimately neuronal death [6]. In addition, neuroinflammation plays a critical role in the early onset and late-stage of neurodegenerative diseases [7]. Microglia known as the resident macrophage cells in the brain are chronically activated by the Pathogen-Associated Molecular Patterns or Danger-Associated Molecular Patterns (PAMPs/DAMPs), such as misfolded protein aggregates, bacteria, viruses, lipopolysaccharides (LPS), and many environmental toxins. Then, the sustained activated microglia subsequently release several cytokines and induce proinflammatory responses [8]. Therefore, neuronal death and microglial overactivation are two major indicators for the pathological development and process of neurodegenerative diseases. Emerging evidence indicates that the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS) are two important processes that facilitate the clearance of misfolded proteins and damaged or unnecessary organelles, such as mitochondria [9]. At the early onset of neurodegenerative diseases, ALP and UPS acting as collaborators play protective roles in the degradation of toxin misfolded proteins, resistance to oxidative stress, and suppression of neuroinflammation [10, 11]. However, the normal function of ALP and UPS is impaired with ageing by the increasingly accumulated misfolded proteins and toxins [12, 13]. In this review, we summarized the current well-studied molecular mechanisms closely associated with the development of neurodegenerative diseases, including the aggregation of misfolded proteins, oxidative damage, mitochondrial dysfunction, DNA damage, excitotoxicity, biometal dyshomeostasis, and neuroinflammatory responses. However, the molecular mechanism of neurodegenerative diseases is still in its infancy and requires further in-depth investigations.
At present, there are currently many drugs developed and approved for the improvement of the symptoms of patients with neurodegenerative diseases in the clinical, but few of them can cure these diseases. More seriously, there might have side effects that appeared owing to the long-term use. In addition, many drugs, such as bapineuzumab, gantenerumab, and solanezumab, were recently declared failures during the clinical trial [14, 15]. Therefore, the accurate molecular mechanism and discovery of targeted drugs for the treatment of neurodegenerative diseases are still urgent and attract more and more attention [16]. In this review, we summarized the main current therapies and their mechanisms of action, neuroprotective effects, and limitations in various neurodegenerative diseases (Table 1). In view of the diversity of pathogenic mechanisms, the combinational therapies or the discovery and development of drugs with multitargets bring new hope for the treatment of neurodegenerative diseases. Therefore, more and more attentions are paid to natural medicine such as traditional Chinese medicines (TCMs) with multicompounds, multitargets, and multieffect properties. TCMs originating from natural products have a 2000-year history of treating diseases in China and have been proved to be safe and effective. To date, various kinds of bioactive compounds, including alkaloids, polyphenols, and saponins, are isolated and identified from natural plants. Among them, polyphenols, an important type of natural product, are mainly widely distributed in natural dietary plants. They are commonly divided into flavonoids and nonflavonoids which are subclassified into phenolic acids, stilbenes, lignans, curcuminoids, and coumarins. The modern pharmacological studies demonstrate that these polyphenols exhibit potential neuroprotective effects including the inhibition of neuronal death and the attenuation of neuroinflammatory responses in vitro and in vivo [17]. In this review, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols in various cellular and animal models of neurodegenerative diseases. In addition, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability. In the future, we hope that the improvement of absorption and stability, the modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. The present review will aid the researchers to know the research advances of polyphenols in neurodegenerative diseases. Lastly, we hope further researches will be encouraged for natural dietary polyphenols in the treatment of neurodegenerative diseases.
Table 1
The main current therapies and their mechanisms, effects, and limitations for neurodegenerative diseases.
Drugs | Mechanisms | Main effects | Main limitations | Diseases |
Donepezil, Ralantamine, Rivastigmine | Inhibiting acetylcholinesterase | Increasing levels of synaptic acetylcholine | Increasing cognitive impairment; low CNS selectivity; gastrointestinal toxicity (nausea, vomiting, and diarrhea) | AD [18–24] |
Memantine | Antagonizing N-methyl-D-aspartate-receptor (NMDAR) | Blocking glutamate from accessing NMDA receptors | Inability to slow down the progression of the disease | |
Aducanumab | Human, immunoglobulin gamma 1 (IgG1) monoclonal antibody | Reducing aggregated soluble and insoluble forms of Aβ | High cost and failure to show definite effect in clinical trials | |
Levodopa+Carbidopa | Inhibiting DA precursor and DOPA decarboxylase | Increasing DA levels in SNc | Wearing and movement disorders; dizziness and gastrointestinal upset | PD [25–28] |
Pramipexole and Apomorphine | Agitating DA | Activating DA receptors | Less effective than levodopa; worsen dyskinesia | |
Selegiline, Rasagiline, and Safinamide | Inhibiting monoamine oxidase B (MAO-B) | Preventing DA metabolism | Mild efficacy in monotherapy | |
Gocovri (Amantadine) | Antivirus | Reducing levodopa-induced dyskinesia | Several side effects including psychosis, edema, constipation, and livedo reticularis | |
Trihexyphenidyl | Antagonizing muscarinic acetylcholine receptor | Reducing tremor | Serious side effects including memory impairment, confusion, and hallucinations | |
Levodopa+Carbidopa+Istradefylline | Inhibiting DA precursor, DOPA decarboxylase, and antagonizing A2A receptor | Reducing the “off” episodes | Higher incidence of treatment-emergent adverse events (TEAEs) and dyskinesia | |
Levodopa+Carbidopa+Opicapone | Inhibiting DA precursor, DOPA decarboxylase, and catechol-o-methyl transferase (COMT) | Reducing the “off” episodes | Higher incidence of TEAEs and worsen dyskinesia than istradefylline | |
Tetrabenazine (TBZ; Xenazine™) and deutetrabenazine (AUSTEDO™) | Inhibiting vesicular monoamine transporter type 2 (VMAT2) | Treating chorea associated with HD and tardive dyskinesia | Inability to slow down the progression of the disease | HD [29] |
Riluzole | Blocking the presynaptic release of glutamate | Inhibiting the excitotoxicity | High cost and modest efficacy | ALS [30–33] |
Edaravone (RADICAVATM) | Antioxidant | Protecting neuronal cells from oxidative stress, ameliorating motor dysfunction | Limited patient population |
2. The Common Molecular Mechanisms of Neurodegenerative Diseases
2.1. Aggregation of Misfolded Proteins
The aggregation of misfolded proteins is recognized to be the common pathological feature of neurodegenerative diseases, such as Aβ and hyperphosphorylated Tau in AD, mutant α-synuclein in PD, and mHtt in HD, as well as SOD1 and TDP-43 in ALS [5, 34, 35] (Figure 1). It is known to us that ALP and UPS are two major intracellular elimination pathways for the clearance of these neurotoxic proteins in neurons and other cells in the brain [9, 36–38]. In the early onset of neurodegenerative disease, these toxic misfolded proteins are degraded via ALP and UPS pathways or effectively engulfed by microglia and astrocytes under normal physiological conditions. However, there is a growing body of studies showing that these misfolded protein aggregates are increasingly accumulated with ageing, accompanied by dysregulated or impaired ALP and UPS, which is implicated in the late stage of various neurodegenerative diseases [39]. Lastly, the normal function of neurons is becoming lost, and the microglia are overactivated, which ultimately results in neuronal death and proinflammatory responses [40] (Figure 1). For example, many accumulated autophagosomes and autophagic vesicles in the brain of AD patients are observed at the late stage of autophagy flux under immunoelectron microscopy [41]. In addition, autophagy is activated in the brain cells of AD patients and APP/PS1 mice. However, autophagy is impaired with ageing as revealed by the accumulation of Aβ-containing autophagic vesicles [42]. Therefore, autophagy plays a protective mechanism that fights against toxic protein-induced neuronal death and neuroinflammation at the early stage of AD, while the normal function of autophagy is impaired by the overgenerated toxic misfolded proteins (e.g., Aβ and Tau). In PD, emerging evidence indicates that the accumulation of mutant genes, including α-synuclein, Parkin, and ubiquitin carboxy-terminal hydrolase L1 (UCHL-1), is closely associated with the dysfunction of ALP and UPS [43]. At the early stage of PD, autophagy participates in the clearance of misfolded proteins, damaged mitochondria, and generated ROS. However, autophagy is impaired in the brain of PD toxin-induced animals or transgenic mice with PD. For instance, the mRNA level of ubiquitinated α-synuclein is significantly increased in the brain of 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced mice [44]. In addition, the impaired lysosome is accompanied by the accumulation of α-synuclein in mice which are chronically injected with probenecid and MPTP [45]. There is a growing body of evidence showing that UPS plays an important role in the degradation of soluble mHtt, but almost 90% of long-lived or large aggregated proteins such as mHtt can only be degraded via ALP [46]. For example, rapamycin, a potent autophagy inducer, significantly accelerates the autophagic degradation of mHtt, while autophagy inhibitors including 3-methyladenine (3-MA) and bafilomycin A1 attenuate the effect of rapamycin [47, 48]. Taken together, the aggregation of misfolded proteins is the pathological hallmarks of neurodegenerative diseases, while ALP and UPS act as a protective mechanism that timely clears the misfolded protein aggregates to maintain cellular homeostasis at the early stage of neurodegenerative diseases. However, misfolded proteins are increasingly accumulated with ageing, which dysregulates the normal functions of ALP and UPS [49]. Therefore, the discovery of ALP or UPS enhancers that target the clearance of misfolded proteins and damaged organelles is recognized to be a promising therapeutic strategy for neurodegenerative diseases.
[figure omitted; refer to PDF]
Polyphenols are complex plant secondary metabolites, which are mainly from dietary plants and exhibit a variety of pharmacological activities, such as antioxidant, anti-inflammatory, anticancer, liver protection, and neuroprotection [140, 449, 450]. Although most of the polyphenols are demonstrated to exhibit neuroprotective effects in various cellular and animal models, there are still very limited polyphenols or plant extracts that are developed into new drugs for the treatment of neurodegenerative diseases. In this respect, only 18 polyphenols are reported to have clinical studies by the US National Institute of Health (NIH). In addition to the poor stability, the literatures indicate that poor absorption, rapid metabolism and systemic elimination, inefficient delivery systems, and selective permeability across the BBB are also serious issues, which largely limit the bioavailability and neuroprotective effects of polyphenols in neurodegenerative diseases [451]. With the development of pharmaceutics, nanoencapsulation of polymeric nanoparticles or liposomes was employed to increase the permeability across BBB and improve the bioavailability of polyphenols. For example, an in silico validation along with the synthesis of CGA-loaded polymeric nanoparticles (CGA-NPs) by ionic gelation method is developed to overcome its pharmacological limitations and improve its stability in targeting neurodegenerative diseases [452]. In addition, liposomal resveratrol exhibits a more pronounced antioxidative effect as evidenced by the radical scavenging ability and reduction in ROS production when compared to resveratrol alone [453]. In LPS-stimulated HMC3 cells and murine acute brain slices, the liposomal curcumin shows a better effect in attenuated neuroinflammatory and reactive astrogliosis reactions than free curcumin [454]. Furthermore, the combinational use of polyphenols with other known compounds with neuroprotective effects is a promising strategy for improving their neuroprotective effects. It is reported that quercetin can function as an effective adjuvant to levodopa therapy might through its COMT/MAO inhibition property in the treatment of PD [455]. With the development of medical chemistry, increasing derivates are synthesized based on the polyphenols with the best neuroprotective effect. According to the structure of resveratrol, a series of compounds are designed and synthesized for the treatment of AD. Among them, compound 5d can be across the BBB and exhibit low toxicity in mice at doses of up to 2000 mg/kg [456]. Therefore, with the evidence suggesting the potential neuroprotective effect of polyphenols and dietary plants in various neurodegenerative diseases (Figure 7), more technologies and strategies on how to improve the absorption and stability, the modification of structure and formulation, and combination therapy are developing, which provide more opportunities from the laboratory into the clinic for polyphenols in the treatment of neurodegenerative diseases.
Authors’ Contributions
Da-Lian Qin, Xiao-Gang Zhou, and An-Guo Wu conceived the paper. Lu Yan, Min-Song Guo, and Wei Ai wrote the original manuscript. Yue Zhang, Feng-Dan Zhu, Yong Tang, Hua Li, and Mao Li collected the data in the tables. An-Guo Wu and Chong-Lin Yu drew the figures. Lu Yu, Qi Chen, and Jian-Ming Wu checked all the references and manuscript. All authors approved the final version of the manuscript. Lu Yan, Min-Song Guo, and Yue Zhang contributed equally to this work.
Acknowledgments
This work was supported by Grants from the National Natural Science Foundation of China (Grant Nos. 81903829 and 81801398), the Science and Technology Planning Project of Sichuan Province, China (Grant Nos. 22GJHZ0008, 2021YJ0180, and 2020YJ0494), the Macao Science and Technology Development Fund of Macao SAR (Project Nos.: SKL-QRCM(MUST)-2020-2022 and MUST-SKL-2021-005), the Southwest Medical University (Grant Nos. 2021ZKZD015, 2021ZKZD018, and 2021ZKMS046), and the Joint project of Luzhou Municipal People’s Government and Southwest Medical University, China (Grant No. 2020LZXNYDJ37).
[1] M. Golpich, E. Amini, Z. Mohamed, R. Azman Ali, N. Mohamed Ibrahim, A. Ahmadiani, "Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment," CNS Neuroscience & Therapeutics, vol. 23 no. 1,DOI: 10.1111/cns.12655, 2017.
[2] S. Kausar, F. Wang, H. Cui, "The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases," Cell, vol. 7 no. 12,DOI: 10.3390/cells7120274, 2018.
[3] K. A. Jellinger, "Basic mechanisms of neurodegeneration: a critical update," Journal of Cellular and Molecular Medicine, vol. 14 no. 3, pp. 457-487, DOI: 10.1111/j.1582-4934.2010.01010.x, 2010.
[4] E. Bossy-Wetzel, R. Schwarzenbacher, S. A. Lipton, "Molecular pathways to neurodegeneration," Nature Medicine, vol. 10 no. S7, pp. S2-S9, DOI: 10.1038/nm1067, 2004.
[5] C. Wells, S. E. Brennan, M. Keon, N. K. Saksena, "Prionoid proteins in the pathogenesis of neurodegenerative diseases," Frontiers in Molecular Neuroscience, vol. 12,DOI: 10.3389/fnmol.2019.00271, 2019.
[6] A. Y. Abramov, A. V. Berezhnov, E. I. Fedotova, V. P. Zinchenko, L. P. Dolgacheva, "Interaction of misfolded proteins and mitochondria in neurodegenerative disorders," Biochemical Society Transactions, vol. 45 no. 4, pp. 1025-1033, DOI: 10.1042/BST20170024, 2017.
[7] X. Zhang, H. Dong, F. Wang, J. Zhang, "Mast cell deficiency protects mice from surgery-induced neuroinflammation," Mediators of Inflammation, vol. 2020,DOI: 10.1155/2020/1921826, 2020.
[8] H. Zhou, Z. Qu, V. V. Mossine, D. L. Nknolise, J. Li, Z. Chen, J. Cheng, C. M. Greenlief, T. P. Mawhinney, P. N. Brown, K. L. Fritsche, M. Hannink, D. B. Lubahn, G. Y. Sun, Z. Gu, "Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells," PLoS One, vol. 9 no. 11, article e113531,DOI: 10.1371/journal.pone.0113531, 2014.
[9] N. B. Nedelsky, P. K. Todd, J. P. Taylor, "Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection," Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1782 no. 12, pp. 691-699, DOI: 10.1016/j.bbadis.2008.10.002, 2008.
[10] R. A. Frake, T. Ricketts, F. M. Menzies, D. C. Rubinsztein, "Autophagy and neurodegeneration," Journal of Clinical Investigation, vol. 125 no. 1, pp. 65-74, DOI: 10.1172/JCI73944, 2015.
[11] C. McKinnon, S. J. Tabrizi, "The ubiquitin-proteasome system in neurodegeneration," Antioxidants & Redox Signaling, vol. 21 no. 17, pp. 2302-2321, DOI: 10.1089/ars.2013.5802, 2014.
[12] Q. Zheng, T. Huang, L. Zhang, Y. Zhou, H. Luo, H. Xu, X. Wang, "Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases," Frontiers in Aging Neuroscience, vol. 8,DOI: 10.3389/fnagi.2016.00303, 2016.
[13] F. M. Menzies, A. Fleming, A. Caricasole, C. F. Bento, S. P. Andrews, A. Ashkenazi, J. Füllgrabe, A. Jackson, M. Jimenez Sanchez, C. Karabiyik, F. Licitra, A. Lopez Ramirez, M. Pavel, C. Puri, M. Renna, T. Ricketts, L. Schlotawa, M. Vicinanza, H. Won, Y. Zhu, J. Skidmore, D. C. Rubinsztein, "Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities," Neuron, vol. 93 no. 5, pp. 1015-1034, DOI: 10.1016/j.neuron.2017.01.022, 2017.
[14] T. Yagi, A. Kosakai, D. Ito, Y. Okada, W. Akamatsu, Y. Nihei, A. Nabetani, F. Ishikawa, Y. Arai, N. Hirose, H. Okano, N. Suzuki, "Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research," PLoS One, vol. 7 no. 7, article e41572,DOI: 10.1371/journal.pone.0041572, 2012.
[15] P. Stanzione, D. Tropepi, "Drugs and clinical trials in neurodegenerative diseases," Annali dell'Istituto Superiore di Sanità, vol. 47 no. 1, pp. 49-54, DOI: 10.4415/ANN_11_01_11, 2011.
[16] L. Feng, X. Wang, F. Peng, J. Liao, Y. Nai, H. Lei, M. Li, H. Xu, "Walnut protein hydrolysates play a protective role on neurotoxicity induced by d-galactose and aluminum chloride in mice," Molecules, vol. 23 no. 9,DOI: 10.3390/molecules23092308, 2018.
[17] L. Milke, J. Aschenbrenner, J. Marienhagen, N. Kallscheuer, "Production of plant-derived polyphenols in microorganisms: current state and perspectives," Applied Microbiology and Biotechnology, vol. 102 no. 4, pp. 1575-1585, DOI: 10.1007/s00253-018-8747-5, 2018.
[18] J. M. Ellis, "Cholinesterase inhibitors in the treatment of dementia," The Journal of the American Osteopathic Association, vol. 105 no. 3, pp. 145-158, 2005.
[19] A. Atri, "Current and future treatments in Alzheimer's disease," Seminars in Neurology, vol. 39 no. 2, pp. 227-240, DOI: 10.1055/s-0039-1678581, 2019.
[20] D. E. Moss, R. G. Perez, H. Kobayashi, "Cholinesterase inhibitor therapy in Alzheimer's disease: the limits and tolerability of irreversible CNS-selective acetylcholinesterase inhibition in primates," Journal of Alzheimer's Disease, vol. 55 no. 3, pp. 1285-1294, DOI: 10.3233/JAD-160733, 2017.
[21] B. P. Imbimbo, "Pharmacodynamic-tolerability relationships of cholinesterase inhibitors for Alzheimers disease," CNS Drugs, vol. 15 no. 5, pp. 375-390, DOI: 10.2165/00023210-200115050-00004, 2001.
[22] J. Folch, O. Busquets, M. Ettcheto, E. Sánchez-López, R. D. Castro-Torres, E. Verdaguer, M. L. Garcia, J. Olloquequi, G. Casadesús, C. Beas-Zarate, C. Pelegri, J. Vilaplana, C. Auladell, A. Camins, "Memantine for the treatment of dementia: a review on its current and future applications," Journal of Alzheimer's Disease, vol. 62 no. 3, pp. 1223-1240, DOI: 10.3233/JAD-170672, 2018.
[23] S. Mukhopadhyay, D. Banerjee, "A primer on the evolution of aducanumab: the first antibody approved for treatment of Alzheimer's disease," Journal of Alzheimer's Disease, vol. 83 no. 4, pp. 1537-1552, DOI: 10.3233/JAD-215065, 2021.
[24] S. Dhillon, "Aducanumab: first approval," Drugs, vol. 81 no. 12, pp. 1437-1443, DOI: 10.1007/s40265-021-01569-z, 2021.
[25] S. G. Reich, J. M. Savitt, "Parkinson's disease," Medical Clinics of North America, vol. 103 no. 2, pp. 337-350, DOI: 10.1016/j.mcna.2018.10.014, 2019.
[26] S. Stanga, A. Caretto, M. Boido, A. Vercelli, "Mitochondrial dysfunctions: a red thread across neurodegenerative diseases," International Journal of Molecular Sciences, vol. 21 no. 10,DOI: 10.3390/ijms21103719, 2020.
[27] O. Rascol, P. Payoux, F. Ory, J. J. Ferreira, C. Brefel-Courbon, J. L. Montastruc, "Limitations of current Parkinson's disease therapy," Annals of Neurology, vol. 53 no. S3, pp. S3-S15, DOI: 10.1002/ana.10513, 2003.
[28] A. Singh, D. Gupta, S. Dhaneria, P. G. Sheth, "Istradefylline versus opicapone for "off" episodes in Parkinson's disease: a systematic review and meta-analysis," Annals of Neurosciences, vol. 28 no. 1-2, pp. 65-73, DOI: 10.1177/09727531211046362, 2021.
[29] K. T. Potkin, S. G. Potkin, "New directions in therapeutics for Huntington disease," Future Neurology, vol. 13 no. 2, pp. 101-121, DOI: 10.2217/fnl-2017-0035, 2018.
[30] L. M. Gittings, R. Sattler, "Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies," Faculty Reviews, vol. 9,DOI: 10.12703/b/9-12, 2020.
[31] R. G. Miller, J. D. Mitchell, D. H. Moore, Cochrane Neuromuscular Group, "Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)," Cochrane Database of Systematic Reviews, vol. 2012,DOI: 10.1002/14651858.CD001447.pub3, 2012.
[32] R. Mejzini, L. L. Flynn, I. L. Pitout, S. Fletcher, S. D. Wilton, P. A. Akkari, "ALS genetics, mechanisms, and therapeutics: where are we now?," Frontiers in Neuroscience, vol. 13,DOI: 10.3389/fnins.2019.01310, 2019.
[33] K. Abe, Y. Itoyama, G. Sobue, S. Tsuji, M. Aoki, M. Doyu, C. Hamada, K. Kondo, T. Yoneoka, M. Akimoto, H. Yoshino, on behalf of The Edaravone ALS Study Group, "Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients," Amyotroph Lateral Scler Frontotemporal Degener, vol. 15 no. 7-8, pp. 610-617, DOI: 10.3109/21678421.2014.959024, 2014.
[34] M. Guo, F. Zhu, W. Qiu, G. Qiao, B. Y.-K. Law, L. Yu, J. Wu, Y. Tang, C. Yu, D. Qin, X. Zhou, A. Wu, "High-throughput screening for amyloid- β binding natural small-molecules based on the combinational use of biolayer interferometry and UHPLC −DAD-Q/TOF-MS/MS," Acta Pharmaceutica Sinica B,DOI: 10.1016/j.apsb.2021.08.030, 2021.
[35] Y. Sun, X. Jiang, R. Pan, X. Zhou, D. Qin, R. Xiong, Y. Wang, W. Qiu, A. Wu, J. Wu, "Escins isolated from Aesculus chinensis Bge. promote the autophagic degradation of mutant huntingtin and inhibit its induced apoptosis in HT22 cells," Frontiers in Pharmacology, vol. 11,DOI: 10.3389/fphar.2020.00116, 2020.
[36] A. G. Wu, R. Pan, B. Y. Law, W. Q. Qiu, J. M. Wu, C. L. He, V. K. Wong, C. L. Yu, X. G. Zhou, D. L. Qin, "Targeting autophagy as a therapeutic strategy for identification of liganans from _Peristrophe japonica_ in Parkinson 's disease," Signal Transduction and Targeted Therapy, vol. 6 no. 1,DOI: 10.1038/s41392-020-00442-x, 2021.
[37] A. G. Wu, V. K. Wong, S. W. Xu, W. K. Chan, C. I. Ng, L. Liu, B. Y. Law, "Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α -Synuclein and huntingtin in PC-12 cells," International Journal of Molecular Sciences, vol. 14 no. 11, pp. 22618-22641, DOI: 10.3390/ijms141122618, 2013.
[38] W. Yi-Ling, Y. O. U. Jing, C. A. O. Jing-Jie, L. I. Wei, J. Liu-Yang, M. E. I. Qi-Bing, W. U. An-Guo, "Screening of the ubiquitin-proteasome system activators for anti-Alzheimer's disease by the high-content fluorescence imaging system," Chinese Journal of Natural Medicines, vol. 20 no. 1, pp. 33-42, DOI: 10.1016/S1875-5364(22)60152-3, 2022.
[39] A. Lilienbaum, "Relationship between the proteasomal system and autophagy," International Journal of Biochemistry and Molecular Biology, vol. 4 no. 1, 2013.
[40] L. M. Kosloski, D. M. Ha, J. A. Hutter, D. K. Stone, M. R. Pichler, A. D. Reynolds, H. E. Gendelman, R. L. Mosley, "Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases," Journal of Neurochemistry, vol. 114 no. 5, pp. 1261-1276, DOI: 10.1111/j.1471-4159.2010.06834.x, 2010.
[41] P. Nilsson, T. C. Saido, "Dual roles for autophagy: degradation and secretion of Alzheimer's disease A β peptide," BioEssays, vol. 36 no. 6, pp. 570-578, DOI: 10.1002/bies.201400002, 2014.
[42] W. H. Yu, A. M. Cuervo, A. Kumar, C. M. Peterhoff, S. D. Schmidt, J. H. Lee, P. S. Mohan, M. Mercken, M. R. Farmery, L. O. Tjernberg, Y. Jiang, K. Duff, Y. Uchiyama, J. Näslund, P. M. Mathews, A. M. Cataldo, R. A. Nixon, "Macroautophagy—a novel β -amyloid peptide-generating pathway activated in Alzheimer's disease," Journal of Cell Biology, vol. 171 no. 1, pp. 87-98, DOI: 10.1083/jcb.200505082, 2005.
[43] K. L. Lim, J. M. Tan, "Role of the ubiquitin proteasome system in Parkinson's disease," BMC Biochemistry, vol. 8,DOI: 10.1186/1471-2091-8-S1-S13, 2007.
[44] M. Vila, S. Vukosavic, V. Jackson-Lewis, M. Neystat, M. Jakowec, S. Przedborski, "α -Synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP," Journal of Neurochemistry, vol. 74 no. 2, pp. 721-729, DOI: 10.1046/j.1471-4159.2000.740721.x, 2000.
[45] J. Magalhaes, M. E. Gegg, A. Migdalska-Richards, A. H. Schapira, "Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons," Scientific Reports, vol. 8 no. 1,DOI: 10.1038/s41598-018-19479-8, 2018.
[46] S. Sarkar, D. C. Rubinsztein, "Huntington's disease: degradation of mutant huntingtin by autophagy," FEBS Journal, vol. 275 no. 17, pp. 4263-4270, DOI: 10.1111/j.1742-4658.2008.06562.x, 2008.
[47] K. A. Sap, A. T. Guler, K. Bezstarosti, A. E. Bury, K. Juenemann, J. A. Demmers, E. A. Reits, "Global Proteome and Ubiquitinome Changes in the Soluble and Insoluble Fractions of Q175 Huntington Mice Brains," Molecular & Cellular Proteomics, vol. 18 no. 9, pp. 1705-1720, DOI: 10.1074/mcp.RA119.001486, 2019.
[48] S. Aravindan, S. Chen, H. Choudhry, C. Molfetta, K. Y. Chen, A. Y. C. Liu, "Osmolytes dynamically regulate mutant Huntingtin aggregation and CREB function in Huntington's disease cell models," Scientific Reports, vol. 10 no. 1,DOI: 10.1038/s41598-020-72613-3, 2020.
[49] D. S. Lin, C. S. Ho, Y. W. Huang, T. Y. Wu, T. H. Lee, Z. D. Huang, T. J. Wang, S. J. Yang, M. F. Chiang, "Impairment of proteasome and autophagy underlying the pathogenesis of leukodystrophy," Cell, vol. 9 no. 5,DOI: 10.3390/cells9051124, 2020.
[50] P. R. Angelova, A. Y. Abramov, "Role of mitochondrial ROS in the brain: from physiology to neurodegeneration," FEBS Letters, vol. 592 no. 5, pp. 692-702, DOI: 10.1002/1873-3468.12964, 2018.
[51] A. G. Wu, J. F. Teng, V. K. Wong, X. G. Zhou, W. Q. Qiu, Y. Tang, J. M. Wu, R. Xiong, R. Pan, Y. L. Wang, B. Tang, T. Y. Ding, L. Yu, W. Zeng, D. L. Qin, B. Y. Law, "Novel steroidal saponin isolated from _Trillium tschonoskii_ maxim. exhibits anti-oxidative effect via autophagy induction in cellular and _Caenorhabditis elegans_ models," Phytomedicine, vol. 65, article 153088,DOI: 10.1016/j.phymed.2019.153088, 2019.
[52] A. Singh, R. Kukreti, L. Saso, S. Kukreti, "Oxidative stress: a key modulator in neurodegenerative diseases," Molecules, vol. 24 no. 8,DOI: 10.3390/molecules24081583, 2019.
[53] A. Nunomura, K. Honda, A. Takeda, K. Hirai, X. Zhu, M. A. Smith, G. Perry, "Oxidative damage to RNA in neurodegenerative diseases," Journal of Biomedicine and Biotechnology, vol. 2006,DOI: 10.1155/JBB/2006/82323, 2006.
[54] M. Battaglini, A. Marino, A. Carmignani, C. Tapeinos, V. Cauda, A. Ancona, N. Garino, V. Vighetto, G. La Rosa, E. Sinibaldi, G. Ciofani, "Polydopamine nanoparticles as an organic and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation," ACS Applied Materials & Interfaces, vol. 12 no. 32, pp. 35782-35798, DOI: 10.1021/acsami.0c05497, 2020.
[55] P. R. Angelova, A. Y. Abramov, "Alpha-synuclein and beta-amyloid - different targets, same players: calcium, free radicals and mitochondria in the mechanism of neurodegeneration," Biochemical and Biophysical Research Communications, vol. 483 no. 4, pp. 1110-1115, DOI: 10.1016/j.bbrc.2016.07.103, 2017.
[56] A. Höhn, D. Weber, T. Jung, C. Ott, M. Hugo, B. Kochlik, R. Kehm, J. König, T. Grune, J. P. Castro, "Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence," Redox Biology, vol. 11, pp. 482-501, DOI: 10.1016/j.redox.2016.12.001, 2017.
[57] Z. Chen, C. Zhong, "Oxidative stress in Alzheimer's disease," Neuroscience Bulletin, vol. 30 no. 2, pp. 271-281, DOI: 10.1007/s12264-013-1423-y, 2014.
[58] P. Jenner, D. T. Dexter, J. Sian, A. H. Schapira, C. D. Marsden, The Royal Kings And Queens Parkinson's Disease Research Group, "Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body Disease," Annals of Neurology, vol. 32 no. S1, pp. S82-S87, DOI: 10.1002/ana.410320714, 1992.
[59] J. A. Serra, R. O. Domínguez, E. S. de Lustig, E. M. Guareschi, A. L. Famulari, E. L. Bartolomé, E. R. Marschoff, "Parkinson's disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson's, Alzheimer's and vascular dementia patients," Journal of Neural Transmission, vol. 108 no. 10, pp. 1135-1148, DOI: 10.1007/s007020170003, 2001.
[60] D. Liao, Y. Chen, Y. Guo, C. Wang, N. Liu, Q. Gong, Y. Fu, Y. Fu, L. Cao, D. Yao, P. Jiang, "Salvianolic acid B improves chronic mild stress-induced depressive behaviors in rats: involvement of AMPK/SIRT1 signaling Pathway," Journal of Inflammation Research, vol. 13, pp. 195-206, DOI: 10.2147/JIR.S249363, 2020.
[61] J. Choi, Q. Zheng, H. E. Katz, T. R. Guilarte, "Silica-based nanoparticle uptake and cellular response by primary microglia," Environmental Health Perspectives, vol. 118 no. 5, pp. 589-595, DOI: 10.1289/ehp.0901534, 2010.
[62] M. S. Brandes, N. E. Gray, "NRF2 as a therapeutic target in neurodegenerative diseases," ASN Neuro, vol. 12,DOI: 10.1177/1759091419899782, 2020.
[63] R. Gold, L. Kappos, D. L. Arnold, A. Bar-Or, G. Giovannoni, K. Selmaj, C. Tornatore, M. T. Sweetser, M. Yang, S. I. Sheikh, K. T. Dawson, "Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis," New England Journal of Medicine, vol. 367 no. 12, pp. 1098-1107, DOI: 10.1056/NEJMoa1114287, 2012.
[64] A. Sturm, V. Mollard, A. Cozijnsen, C. D. Goodman, G. I. McFadden, "Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase," Proceedings of the National Academy of Sciences of the United States of America, vol. 112 no. 33, pp. 10216-10223, DOI: 10.1073/pnas.1423959112, 2015.
[65] X. Sun, A. Wu, B. Y. Kwan Law, C. Liu, W. Zeng, A. C. Ling Qiu, Y. Han, Y. He, V. K. Wai Wong, "The active components derived from Penthorum chinense Pursh protect against oxidative-stress-induced vascular injury via autophagy induction," Free Radical Biology and Medicine, vol. 146, pp. 160-180, DOI: 10.1016/j.freeradbiomed.2019.10.417, 2020.
[66] R. Reja, A. J. Venkatakrishnan, J. Lee, B. C. Kim, J. W. Ryu, S. Gong, J. Bhak, D. Park, "MitoInteractome: mitochondrial protein interactome database, and its application in 'aging network' analysis," BMC Genomics, vol. 10,DOI: 10.1186/1471-2164-10-S3-S20, 2009.
[67] H. Du, S. S. Yan, "Mitochondrial medicine for neurodegenerative diseases," The International Journal of Biochemistry & Cell Biology, vol. 42 no. 5, pp. 560-572, DOI: 10.1016/j.biocel.2010.01.004, 2010.
[68] R. H. Swerdlow, "The neurodegenerative mitochondriopathies," Journal of Alzheimer's Disease, vol. 17 no. 4, pp. 737-751, DOI: 10.3233/JAD-2009-1095, 2009.
[69] R. Banerjee, A. A. Starkov, M. F. Beal, B. Thomas, "Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis," Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1792 no. 7, pp. 651-663, DOI: 10.1016/j.bbadis.2008.11.007, 2009.
[70] S. Almeida, A. B. Sarmento-Ribeiro, C. Januário, A. C. Rego, C. R. Oliveira, "Evidence of apoptosis and mitochondrial abnormalities in peripheral blood cells of Huntington's disease patients," Biochemical and Biophysical Research Communications, vol. 374 no. 4, pp. 599-603, DOI: 10.1016/j.bbrc.2008.07.009, 2008.
[71] I. Hervias, M. F. Beal, G. Manfredi, "Mitochondrial dysfunction and amyotrophic lateral sclerosis," Muscle & Nerve, vol. 33 no. 5, pp. 598-608, DOI: 10.1002/mus.20489, 2006.
[72] M. A. Alharbi, G. Al-Kafaji, N. B. Khalaf, S. A. Messaoudi, S. Taha, A. Daif, M. Bakhiet, "Four novel mutations in the mitochondrial ND4 gene of complex I in patients with multiple sclerosis," Biomedical Reports, vol. 11 no. 6, pp. 257-268, DOI: 10.3892/br.2019.1250, 2019.
[73] N. Dragicevic, M. Mamcarz, Y. Zhu, R. Buzzeo, J. Tan, G. W. Arendash, P. C. Bradshaw, "Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer's transgenic mice," Journal of Alzheimer's Disease, vol. 20 no. s2, pp. S535-S550, DOI: 10.3233/JAD-2010-100342, 2010.
[74] M. Manczak, T. S. Anekonda, E. Henson, B. S. Park, J. Quinn, P. H. Reddy, "Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression," Human Molecular Genetics, vol. 15 no. 9, pp. 1437-1449, 2006.
[75] Y. Liu, B. Yu, "MicroRNA-186-5p is expressed highly in ethanol-induced cardiomyocytes and regulates apoptosis via the target gene XIAP," Molecular Medicine Reports, vol. 19 no. 4, pp. 3179-3189, DOI: 10.3892/mmr.2019.9953, 2019.
[76] Y. Luo, A. Hoffer, B. Hoffer, X. Qi, "Mitochondria: a therapeutic target for Parkinson's disease?," International Journal of Molecular Sciences, vol. 16 no. 9, pp. 20704-20730, DOI: 10.3390/ijms160920704, 2015.
[77] A. G. Wu, W. Zeng, V. K. Wong, Y. Z. Zhu, A. C. Lo, L. Liu, B. Y. Law, "Hederagenin and α -hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice," Pharmacological Research, vol. 115,DOI: 10.1016/j.phrs.2016.11.002, 2017.
[78] E. Seppet, M. Gruno, A. Peetsalu, Z. Gizatullina, H. P. Nguyen, S. Vielhaber, M. H. Wussling, S. Trumbeckaite, O. Arandarcikaite, D. Jerzembeck, M. Sonnabend, K. Jegorov, S. Zierz, F. Striggow, F. N. Gellerich, "Mitochondria and energetic depression in cell pathophysiology," International Journal of Molecular Sciences, vol. 10 no. 5, pp. 2252-2303, DOI: 10.3390/ijms10052252, 2009.
[79] M. Gu, M. T. Gash, V. M. Mann, F. Javoy-Agid, J. M. Cooper, A. H. Schapira, "Mitochondrial defect in Huntington's disease caudate nucleus," Annals of Neurology, vol. 39 no. 3, pp. 385-389, DOI: 10.1002/ana.410390317, 1996.
[80] S. Chen, P. Sayana, X. Zhang, W. Le, "Genetics of amyotrophic lateral sclerosis: an update," Molecular Neurodegeneration, vol. 8 no. 1,DOI: 10.1186/1750-1326-8-28, 2013.
[81] J. H. Hoeijmakers, "DNA damage, aging, and cancer," New England Journal of Medicine, vol. 361 no. 15, pp. 1475-1485, DOI: 10.1056/NEJMra0804615, 2009.
[82] D. Chen, J. Lan, W. Pei, J. Chen, "Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria," Journal of Neuroscience Research, vol. 61 no. 2, pp. 225-236, DOI: 10.1002/1097-4547(20000715)61:2<225::AID-JNR13>3.0.CO;2-0, 2000.
[83] S. Maynard, E. F. Fang, M. Scheibye-Knudsen, D. L. Croteau, V. A. Bohr, "DNA damage, DNA repair, aging, and neurodegeneration," Cold Spring Harbor Perspectives in Medicine, vol. 5 no. 10,DOI: 10.1101/cshperspect.a025130, 2015.
[84] C. A. Ross, R. Truant, "DNA repair: a unifying mechanism in neurodegeneration," Nature, vol. 541 no. 7635, pp. 34-35, DOI: 10.1038/nature21107, 2017.
[85] R. Madabhushi, L. Pan, L. H. Tsai, "DNA damage and its links to neurodegeneration," Neuron, vol. 83 no. 2, pp. 266-282, DOI: 10.1016/j.neuron.2014.06.034, 2014.
[86] S. Katyal, P. J. McKinnon, "DNA strand breaks, neurodegeneration and aging in the brain," Mechanisms of Ageing and Development, vol. 129 no. 7-8, pp. 483-491, DOI: 10.1016/j.mad.2008.03.008, 2008.
[87] C. Canugovi, M. Misiak, L. K. Ferrarelli, D. L. Croteau, V. A. Bohr, "The role of DNA repair in brain related disease pathology," DNA Repair, vol. 12 no. 8, pp. 578-587, DOI: 10.1016/j.dnarep.2013.04.010, 2013.
[88] E. Adamec, J. P. Vonsattel, R. A. Nixon, "DNA strand breaks in Alzheimer's disease," Brain Research, vol. 849 no. 1-2, pp. 67-77, DOI: 10.1016/S0006-8993(99)02004-1, 1999.
[89] D. A. Shackelford, "DNA end joining activity is reduced in Alzheimer's disease," Neurobiology of Aging, vol. 27 no. 4, pp. 596-605, DOI: 10.1016/j.neurobiolaging.2005.03.009, 2006.
[90] R. Lopez-Gonzalez, Y. Lu, T. F. Gendron, A. Karydas, H. Tran, D. Yang, L. Petrucelli, B. L. Miller, S. Almeida, F. B. Gao, "Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons," Neuron, vol. 92 no. 2, pp. 383-391, DOI: 10.1016/j.neuron.2016.09.015, 2016.
[91] A. Bender, K. J. Krishnan, C. M. Morris, G. A. Taylor, A. K. Reeve, R. H. Perry, E. Jaros, J. S. Hersheson, J. Betts, T. Klopstock, R. W. Taylor, D. M. Turnbull, "High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease," Nature Genetics, vol. 38 no. 5, pp. 515-517, DOI: 10.1038/ng1769, 2006.
[92] T. Maiuri, A. J. Mocle, C. L. Hung, J. Xia, W. M. van Roon-Mom, R. Truant, "Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex," Human Molecular Genetics, vol. 26 no. 2, pp. 395-406, DOI: 10.1093/hmg/ddw395, 2017.
[93] D. C. Javitt, S. R. Zukin, "The role of excitatory amino acids in neuropsychiatric illness," The Journal of Neuropsychiatry and Clinical Neurosciences, vol. 2 no. 1, pp. 44-52, DOI: 10.1176/jnp.2.1.44, 1990.
[94] S. A. Shah, H. Y. Lee, R. A. Bressan, D. J. Yun, M. O. Kim, "Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain," Cell Death & Disease, vol. 5 no. 1, article e1026,DOI: 10.1038/cddis.2013.538, 2014.
[95] M. M. Fan, L. A. Raymond, "N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease," Progress in Neurobiology, vol. 81 no. 5-6, pp. 272-293, DOI: 10.1016/j.pneurobio.2006.11.003, 2007.
[96] J. T. Coyle, R. Schwarcz, "Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea," Nature, vol. 263 no. 5574, pp. 244-246, DOI: 10.1038/263244a0, 1976.
[97] Z. Q. Liang, X. X. Wang, Y. Wang, D. M. Chuang, M. DiFiglia, T. N. Chase, Z. H. Qin, "Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity," Neurobiology of Disease, vol. 20 no. 2, pp. 562-573, DOI: 10.1016/j.nbd.2005.04.011, 2005.
[98] H. Zhang, Q. Li, R. K. Graham, E. Slow, M. R. Hayden, I. Bezprozvanny, "Full length mutant huntingtin is required for altered Ca 2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease," Neurobiology of Disease, vol. 31 no. 1, pp. 80-88, DOI: 10.1016/j.nbd.2008.03.010, 2008.
[99] C. Song, Y. Zhang, C. G. Parsons, Y. F. Liu, "Expression of polyglutamine-expanded huntingtin induces tyrosine phosphorylation of N-methyl-D-aspartate receptors," Journal of Biological Chemistry, vol. 278 no. 35, pp. 33364-33369, DOI: 10.1074/jbc.M304240200, 2003.
[100] M. M. Zeron, N. Chen, A. Moshaver, A. T. Lee, C. L. Wellington, M. R. Hayden, L. A. Raymond, "Mutant huntingtin enhances excitotoxic cell death," Molecular and Cellular Neuroscience, vol. 17 no. 1, pp. 41-53, DOI: 10.1006/mcne.2000.0909, 2001.
[101] K. Parameshwaran, M. Dhanasekaran, V. Suppiramaniam, "Amyloid beta peptides and glutamatergic synaptic dysregulation," Experimental Neurology, vol. 210 no. 1,DOI: 10.1016/j.expneurol.2007.10.008, 2008.
[102] F. G. De Felice, P. T. Velasco, M. P. Lambert, K. Viola, S. J. Fernandez, S. T. Ferreira, W. L. Klein, "Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine," Journal of Biological Chemistry, vol. 282 no. 15, pp. 11590-11601, DOI: 10.1074/jbc.M607483200, 2007.
[103] T. D. Helton, T. Otsuka, M. C. Lee, Y. Mu, M. D. Ehlers, "Pruning and loss of excitatory synapses by the parkin ubiquitin ligase," Proceedings of the National Academy of Sciences of the United States of America, vol. 105 no. 49, pp. 19492-19497, DOI: 10.1073/pnas.0802280105, 2008.
[104] J. Moring, L. A. Niego, L. M. Ganley, M. W. Trumbore, L. G. Herbette, "Interaction of the NMDA receptor noncompetitive antagonist MK-801 with model and native membranes," Biophysical Journal, vol. 67 no. 6, pp. 2376-2386, DOI: 10.1016/S0006-3495(94)80724-6, 1994.
[105] K. Li, H. Reichmann, "Role of iron in neurodegenerative diseases," Journal of Neural Transmission, vol. 123 no. 4, pp. 389-399, DOI: 10.1007/s00702-016-1508-7, 2016.
[106] V. Desai, S. G. Kaler, "Role of copper in human neurological disorders," The American Journal of Clinical Nutrition, vol. 88 no. 3, pp. 855S-858S, DOI: 10.1093/ajcn/88.3.855S, 2008.
[107] A. S. Prasad, "Impact of the discovery of human zinc deficiency on health," Journal of the American College of Nutrition, vol. 28 no. 3, pp. 257-265, DOI: 10.1080/07315724.2009.10719780, 2009.
[108] P. Chen, M. R. Miah, M. Aschner, "Metals and neurodegeneration," F1000Research, vol. 5,DOI: 10.12688/f1000research.7431.1, 2016.
[109] L. Mezzaroba, D. F. Alfieri, A. N. Colado Simão, E. M. Vissoci Reiche, "The role of zinc, copper, manganese and iron in neurodegenerative diseases," Neurotoxicology, vol. 74, pp. 230-241, DOI: 10.1016/j.neuro.2019.07.007, 2019.
[110] Y. Wang, Y. Shi, H. Wei, "Calcium dysregulation in Alzheimer's disease: a target for new drug development," Journal of Alzheimer's disease & Parkinsonism, vol. 7 no. 5,DOI: 10.4172/2161-0460.1000374, 2017.
[111] Q. Ma, Y. Li, J. Du, H. Liu, K. Kanazawa, T. Nemoto, H. Nakanishi, Y. Zhao, "Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS," Peptides, vol. 27 no. 4, pp. 841-849, DOI: 10.1016/j.peptides.2005.09.002, 2006.
[112] Q. F. Ma, Y. M. Li, J. T. Du, K. Kanazawa, T. Nemoto, H. Nakanishi, Y. F. Zhao, "Binding of copper (II) ion to an Alzheimer's tau peptide as revealed by MALDI-TOF MS, CD, and NMR," Biopolymers, vol. 79 no. 2, pp. 74-85, DOI: 10.1002/bip.20335, 2005.
[113] J. Salazar, N. Mena, S. Hunot, A. Prigent, D. Alvarez-Fischer, M. Arredondo, C. Duyckaerts, V. Sazdovitch, L. Zhao, L. M. Garrick, M. T. Nuñez, M. D. Garrick, R. Raisman-Vozari, E. C. Hirsch, "Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease," Proceedings of the National Academy of Sciences of the United States of America, vol. 105 no. 47, pp. 18578-18583, DOI: 10.1073/pnas.0804373105, 2008.
[114] E. Oestreicher, G. J. Sengstock, P. Riederer, C. W. Olanow, A. J. Dunn, G. W. Arendash, "Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study," Brain Research, vol. 660 no. 1,DOI: 10.1016/0006-8993(94)90833-8, 1994.
[115] M. Wegrzynowicz, H. K. Holt, D. B. Friedman, A. B. Bowman, "Changes in the striatal proteome of YAC128Q mice exhibit gene-environment interactions between mutant huntingtin and manganese," Journal of Proteome Research, vol. 11 no. 2, pp. 1118-1132, DOI: 10.1021/pr200839d, 2012.
[116] J. H. Fox, J. A. Kama, G. Lieberman, R. Chopra, K. Dorsey, V. Chopra, I. Volitakis, R. A. Cherny, A. I. Bush, S. Hersch, "Mechanisms of copper ion mediated Huntington's disease progression," PLoS One, vol. 2 no. 3,DOI: 10.1371/journal.pone.0000334, 2007.
[117] F. Fang, L. C. Kwee, K. D. Allen, D. M. Umbach, W. Ye, M. Watson, J. Keller, E. Z. Oddone, D. P. Sandler, S. Schmidt, F. Kamel, "Association between blood lead and the risk of amyotrophic lateral sclerosis," American Journal of Epidemiology, vol. 171 no. 10, pp. 1126-1133, DOI: 10.1093/aje/kwq063, 2010.
[118] M. Vinceti, F. Bonvicini, K. J. Rothman, L. Vescovi, F. Wang, "The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study," Environmental Health, vol. 9 no. 1,DOI: 10.1186/1476-069X-9-77, 2010.
[119] K. A. Trumbull, J. S. Beckman, "A role for copper in the toxicity of zinc-deficient superoxide dismutase to motor neurons in amyotrophic lateral sclerosis," Antioxidants & Redox Signaling, vol. 11 no. 7, pp. 1627-1639, DOI: 10.1089/ars.2009.2574, 2009.
[120] M. V. Sofroniew, C. L. Howe, W. C. Mobley, "Nerve growth factor signaling, neuroprotection, and neural repair," Annual Review of Neuroscience, vol. 24 no. 1, pp. 1217-1281, DOI: 10.1146/annurev.neuro.24.1.1217, 2001.
[121] B. Connor, M. Dragunow, "The role of neuronal growth factors in neurodegenerative disorders of the human brain," Brain Research Reviews, vol. 27 no. 1,DOI: 10.1016/S0165-0173(98)00004-6, 1998.
[122] A. M. Sullivan, G. W. O'Keeffe, "Neurotrophic factor therapy for Parkinson's disease: past, present and future," Neural Regeneration Research, vol. 11 no. 2, pp. 205-207, DOI: 10.4103/1673-5374.177710, 2016.
[123] K. Bossers, G. Meerhoff, R. Balesar, J. W. van Dongen, C. G. Kruse, D. F. Swaab, J. Verhaagen, "Analysis of gene expression in Parkinson's disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death," Brain Pathology, vol. 19 no. 1, pp. 91-107, DOI: 10.1111/j.1750-3639.2008.00171.x, 2009.
[124] J. Budni, T. Bellettini-Santos, F. Mina, M. L. Garcez, A. I. Zugno, "The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease," Aging and Disease, vol. 6 no. 5, pp. 331-341, DOI: 10.14336/AD.2015.0825, 2015.
[125] M. Nilbratt, O. Porras, A. Marutle, O. Hovatta, A. Nordberg, "Neurotrophic factors promote cholinergic differentiation in human embryonic stem cell-derived neurons," Journal of Cellular and Molecular Medicine, vol. 14 no. 6b, pp. 1476-1484, DOI: 10.1111/j.1582-4934.2009.00916.x, 2010.
[126] T. Nagatsu, M. Sawada, "Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects," Neuropsychiatric Disorders An Integrative Approach,DOI: 10.1007/978-3-211-73574-9_14, 2007.
[127] M. Ziebell, U. Khalid, A. B. Klein, S. Aznar, G. Thomsen, P. Jensen, G. M. Knudsen, "Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration," Neurobiology of Aging, vol. 33 no. 2, pp. 428.e1-428.e5, DOI: 10.1016/j.neurobiolaging.2010.11.010, 2012.
[128] M. Chermenina, P. Schouten, N. Nevalainen, F. Johansson, G. Orädd, I. Strömberg, "GDNF is important for striatal organization and maintenance of dopamine neurons grown in the presence of the striatum," Neuroscience, vol. 270,DOI: 10.1016/j.neuroscience.2014.04.008, 2014.
[129] H. S. Kim, I. Jeon, J. E. Noh, H. Lee, K. S. Hong, N. Lee, Z. Pei, J. Song, "Intracerebral transplantation of BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) promotes migration, differentiation and functional recovery in a rodent model of Huntington's disease," Experimental Neurobiology, vol. 29 no. 2, pp. 130-137, DOI: 10.5607/en20011, 2020.
[130] F. Gouel, A. S. Rolland, J. C. Devedjian, T. Burnouf, D. Devos, "Past and future of neurotrophic growth factors therapies in ALS: from single neurotrophic growth factor to stem cells and human platelet lysates," Frontiers in Neurology, vol. 10,DOI: 10.3389/fneur.2019.00835, 2019.
[131] C. J. Garwood, J. D. Cooper, D. P. Hanger, W. Noble, "Anti-inflammatory impact of minocycline in a mouse model of tauopathy," Frontiers in Psychiatry, vol. 1,DOI: 10.3389/fpsyt.2010.00136, 2010.
[132] P. Liu, H. Li, Y. Wang, X. Su, Y. Li, M. Yan, L. Ma, H. Che, "Harmine ameliorates cognitive impairment by inhibiting NLRP3 inflammasome activation and enhancing the BDNF/TrkB signaling pathway in STZ-induced diabetic rats," Frontiers in Pharmacology, vol. 11,DOI: 10.3389/fphar.2020.00535, 2020.
[133] A. G. Wu, X. G. Zhou, G. Qiao, L. Yu, Y. Tang, L. Yan, W. Q. Qiu, R. Pan, C. L. Yu, B. Y. Law, D. L. Qin, J. M. Wu, "Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases," Ageing Research Reviews, vol. 65,DOI: 10.1016/j.arr.2020.101202, 2021.
[134] W. Q. Qiu, W. Ai, F. D. Zhu, Y. Zhang, M. S. Guo, B. Y. Law, J. M. Wu, V. K. Wong, Y. Tang, L. Yu, Q. Chen, C. L. Yu, J. Liu, D. L. Qin, X. G. Zhou, A. G. Wu, "Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-Mediated mitophagy," Free Radical Biology & Medicine, vol. 179, pp. 76-94, DOI: 10.1016/j.freeradbiomed.2021.12.263, 2022.
[135] J. Bournival, M. Plouffe, J. Renaud, C. Provencher, M. G. Martinoli, "Quercetin and sesamin protect dopaminergic cells from MPP + -induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system," Oxidative Medicine and Cellular Longevity, vol. 2012,DOI: 10.1155/2012/921941, 2012.
[136] M. Moscovitch-Lopatin, A. Weiss, H. D. Rosas, J. Ritch, G. Doros, K. B. Kegel, M. Difiglia, R. Kuhn, G. Bilbe, P. Paganetti, S. Hersch, "Optimization of an HTRF assay for the detection of soluble mutant huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease," PLoS Currents, vol. 2, article Rrn1205,DOI: 10.1371/currents.RRN1205, 2010.
[137] D. A. Simmons, M. Casale, B. Alcon, N. Pham, N. Narayan, G. Lynch, "Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease," Glia, vol. 55 no. 10, pp. 1074-1084, DOI: 10.1002/glia.20526, 2007.
[138] A. Khoshnan, J. Ko, E. E. Watkin, L. A. Paige, P. H. Reinhart, P. H. Patterson, "Activation of the I B kinase complex and nuclear Factor-B contributes to mutant huntingtin neurotoxicity," The Journal of Neuroscience, vol. 24 no. 37, pp. 7999-8008, DOI: 10.1523/JNEUROSCI.2675-04.2004, 2004.
[139] F. Zamudio, A. R. Loon, S. Smeltzer, K. Benyamine, N. K. Navalpur Shanmugam, N. J. F. Stewart, D. C. Lee, K. Nash, M. B. Selenica, "TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model," Journal of Neuroinflammation, vol. 17 no. 1,DOI: 10.1186/s12974-020-01952-9, 2020.
[140] K. B. Pandey, S. I. Rizvi, "Plant polyphenols as dietary antioxidants in human health and disease," Oxidative Medicine and Cellular Longevity, vol. 2 no. 5, pp. 5370-278, DOI: 10.4161/oxim.2.5.9498, 2009.
[141] L. Perrone, S. Sampaolo, M. A. B. Melone, "Bioactive phenolic compounds in the modulation of central and peripheral nervous system cancers: facts and misdeeds," Cancers, vol. 12 no. 2,DOI: 10.3390/cancers12020454, 2020.
[142] R. K. Singla, A. K. Dubey, A. Garg, R. K. Sharma, M. Fiorino, S. M. Ameen, M. A. Haddad, M. Al-Hiary, "Natural polyphenols: chemical classification, definition of classes, subcategories, and structures," Journal of AOAC International, vol. 102 no. 5, pp. 1397-1400, DOI: 10.5740/jaoacint.19-0133, 2019.
[143] W. Wen, S. Alseekh, A. R. Fernie, "Conservation and diversification of flavonoid metabolism in the plant kingdom," Current Opinion in Plant Biology, vol. 55, pp. 100-108, DOI: 10.1016/j.pbi.2020.04.004, 2020.
[144] J. Nie, X. Liu, "Quercetin alleviates generalized hyperalgesia in mice with induced adenomyosis," Molecular Medicine Reports, vol. 16 no. 4, pp. 5370-5376, DOI: 10.3892/mmr.2017.7238, 2017.
[145] K. Jiménez-Aliaga, P. Bermejo-Bescós, J. Benedí, S. Martín-Aragón, "Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells," Life Sciences, vol. 89 no. 25-26, pp. 939-945, DOI: 10.1016/j.lfs.2011.09.023, 2011.
[146] D. Bao, J. Wang, X. Pang, H. Liu, "Protective effect of quercetin against oxidative stress-induced cytotoxicity in rat pheochromocytoma (PC-12) cells," Molecules, vol. 22 no. 7,DOI: 10.3390/molecules22071122, 2017.
[147] M. Lee, E. G. McGeer, P. L. McGeer, "Quercetin, not caffeine, is a major neuroprotective component in coffee," Neurobiology of Aging, vol. 46, pp. 113-123, DOI: 10.1016/j.neurobiolaging.2016.06.015, 2016.
[148] X. Yu, Y. Li, X. Mu, "Effect of Quercetin on PC12 Alzheimer’s Disease Cell Model Induced by A β 25-35 and Its Mechanism Based on Sirtuin1/Nrf2/HO-1 Pathway," BioMed Research International, vol. 2020,DOI: 10.1155/2020/8210578, 2020.
[149] Y. Shimmyo, T. Kihara, A. Akaike, T. Niidome, H. Sugimoto, "Flavonols and flavones as BACE-1 inhibitors: structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features," Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1780 no. 5, pp. 819-825, DOI: 10.1016/j.bbagen.2008.01.017, 2008.
[150] W. Jiang, T. Luo, S. Li, Y. Zhou, X. Y. Shen, F. He, J. Xu, H. Q. Wang, "Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3 β signaling pathways in HT22 hippocampal neurons," PLoS One, vol. 11 no. 4, article e0152371,DOI: 10.1371/journal.pone.0152371, 2016.
[151] M. Ay, J. Luo, M. Langley, H. Jin, V. Anantharam, A. Kanthasamy, A. G. Kanthasamy, "Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease," Journal of Neurochemistry, vol. 141 no. 5, pp. 766-782, DOI: 10.1111/jnc.14033, 2017.
[152] H. E. El-Horany, R. N. El-Latif, M. M. ElBatsh, M. N. Emam, "Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson's disease: modulating autophagy (quercetin on experimental Parkinson's disease)," Journal of Biochemical and Molecular Toxicology, vol. 30 no. 7, pp. 360-369, 2016.
[153] S. Sharma, K. Raj, S. Singh, "Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced Parkinson's disease in experimental rats," Neurotoxicity Research, vol. 37 no. 1, pp. 198-209, DOI: 10.1007/s12640-019-00120-z, 2020.
[154] S. Singh, S. Jamwal, P. Kumar, "Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity," Neural Regeneration Research, vol. 12 no. 7, pp. 1137-1144, DOI: 10.4103/1673-5374.211194, 2017.
[155] J. Chakraborty, U. Rajamma, N. Jana, K. P. Mohanakumar, "Quercetin improves the activity of the ubiquitin-proteasomal system in 150Q mutated huntingtin-expressing cells but exerts detrimental effects on neuronal survivability," Journal of Neuroscience Research, vol. 93 no. 10, pp. 1581-1591, DOI: 10.1002/jnr.23618, 2015.
[156] N. K. Bhatia, P. Modi, S. Sharma, S. Deep, "Quercetin and baicalein act as potent antiamyloidogenic and fibril destabilizing agents for SOD1 fibrils," ACS Chemical Neuroscience, vol. 11 no. 8, pp. 1129-1138, DOI: 10.1021/acschemneuro.9b00677, 2020.
[157] P. Ip, P. R. Sharda, A. Cunningham, S. Chakrabartty, V. Pande, A. Chakrabartty, "Quercitrin and quercetin 3- β -d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant," Protein Engineering, Design and Selection, vol. 30 no. 6, pp. 431-440, DOI: 10.1093/protein/gzx025, 2017.
[158] C. Garza-Lombó, Y. Posadas, L. Quintanar, M. E. Gonsebatt, R. Franco, "Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: redox signaling and oxidative stress," Antioxidants & Redox Signaling, vol. 28 no. 18, pp. 1669-1703, DOI: 10.1089/ars.2017.7272, 2018.
[159] P. Faller, "Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer," Chembiochem, vol. 10 no. 18, pp. 2837-2845, DOI: 10.1002/cbic.200900321, 2009.
[160] D. R. Sharma, W. Y. Wani, A. Sunkaria, R. J. Kandimalla, R. K. Sharma, D. Verma, A. Bal, K. D. Gill, "Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus," Neuroscience, vol. 324, pp. 163-176, DOI: 10.1016/j.neuroscience.2016.02.055, 2016.
[161] K. Zubčić, V. Radovanović, J. Vlainić, P. R. Hof, N. Oršolić, G. Šimić, M. J. Jembrek, "PI3K/Akt and ERK1/2 signalling are involved in quercetin-mediated neuroprotection against copper-induced injury," Oxidative Medicine and Cellular Longevity, vol. 2020,DOI: 10.1155/2020/9834742, 2020.
[162] E. Bahar, J. Y. Kim, H. Yoon, "Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF- κ B and HO-1/Nrf2 pathways," International Journal of Molecular Sciences, vol. 18 no. 9,DOI: 10.3390/ijms18091989, 2017.
[163] Y. Liu, Y. Gong, W. Xie, A. Huang, X. Yuan, H. Zhou, X. Zhu, X. Chen, J. Liu, J. Liu, X. Qin, "Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer's disease," Nanoscale, vol. 12 no. 11, pp. 6498-6511, DOI: 10.1039/C9NR09713A, 2020.
[164] R. G. R. Pinheiro, A. Granja, J. A. Loureiro, M. C. Pereira, M. Pinheiro, A. R. Neves, S. Reis, "RVG29-functionalized lipid nanoparticles for quercetin brain delivery and Alzheimer's disease," Pharmaceutical Research, vol. 37 no. 7,DOI: 10.1007/s11095-020-02865-1, 2020.
[165] Y. Qi, L. Guo, Y. Jiang, Y. Shi, H. Sui, L. Zhao, "Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles," Drug Delivery, vol. 27 no. 1, pp. 745-755, DOI: 10.1080/10717544.2020.1762262, 2020.
[166] C. Li, H. Schluesener, "Health-promoting effects of the citrus flavanone hesperidin," Critical Reviews in Food Science and Nutrition, vol. 57 no. 3, pp. 613-631, DOI: 10.1080/10408398.2014.906382, 2017.
[167] M. Ikram, T. Muhammad, S. U. Rehman, A. Khan, M. G. Jo, T. Ali, M. O. Kim, "Hesperetin confers neuroprotection by regulating Nrf2/TLR4/NF- κ B signaling in an A β mouse model," Molecular Neurobiology, vol. 56 no. 9, pp. 6293-6309, DOI: 10.1007/s12035-019-1512-7, 2019.
[168] T. Muhammad, M. Ikram, R. Ullah, S. U. Rehman, M. O. Kim, "Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF- κ B signaling," Nutrients, vol. 11 no. 3,DOI: 10.3390/nu11030648, 2019.
[169] S. L. Hwang, G. C. Yen, "Effect of hesperetin against oxidative stress via ER- and TrkA-mediated actions in PC12 cells," Journal of Agricultural and Food Chemistry, vol. 59 no. 10, pp. 5779-5785, DOI: 10.1021/jf104632a, 2011.
[170] M. R. Poetini, S. M. Araujo, M. Trindade de Paula, V. C. Bortolotto, L. B. Meichtry, F. Polet de Almeida, C. R. Jesse, S. N. Kunz, M. Prigol, "Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson's disease," Chemico-Biological Interactions, vol. 279, pp. 177-186, DOI: 10.1016/j.cbi.2017.11.018, 2018.
[171] P. Kumar, A. Kumar, "Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington's like symptoms in rats: possible role of nitric oxide," Behavioural Brain Research, vol. 206 no. 1, pp. 38-46, DOI: 10.1016/j.bbr.2009.08.028, 2010.
[172] D. Haghmorad, M. B. Mahmoudi, Z. Salehipour, Z. Jalayer, A. A. Momtazi Brojeni, M. Rastin, P. Kokhaei, M. Mahmoudi, "Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis," Journal of Neuroimmunology, vol. 302, pp. 23-33, DOI: 10.1016/j.jneuroim.2016.11.009, 2017.
[173] A. Roohbakhsh, H. Parhiz, F. Soltani, R. Rezaee, M. Iranshahi, "Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin -- A mini-review," Life Sciences, vol. 113 no. 1-2,DOI: 10.1016/j.lfs.2014.07.029, 2014.
[174] F. J. Pérez-Cano, M. Massot-Cladera, M. J. Rodríguez-Lagunas, M. Castell, "Flavonoids affect host-microbiota crosstalk through TLR modulation," Antioxidants, vol. 3 no. 4, pp. 649-670, DOI: 10.3390/antiox3040649, 2014.
[175] X. Wu, G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, R. L. Prior, "Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption," Journal of Agricultural and Food Chemistry, vol. 54 no. 11, pp. 4069-4075, DOI: 10.1021/jf060300l, 2006.
[176] H. Ma, S. L. Johnson, W. Liu, N. A. DaSilva, S. Meschwitz, J. A. Dain, N. P. Seeram, "Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti- β -amyloid aggregation, and microglial neuroprotective effects," International Journal of Molecular Sciences, vol. 19 no. 2,DOI: 10.3390/ijms19020461, 2018.
[177] M. M. Rahman, T. Ichiyanagi, T. Komiyama, S. Sato, T. Konishi, "Effects of anthocyanins on psychological stress-induced oxidative stress and neurotransmitter status," Journal of Agricultural and Food Chemistry, vol. 56 no. 16, pp. 7545-7550, DOI: 10.1021/jf800930s, 2008.
[178] J. W. Jeong, W. S. Lee, S. C. Shin, G. Y. Kim, B. T. Choi, Y. H. Choi, "Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF- κ B and Akt/MAPKs signaling pathways," International Journal of Molecular Sciences, vol. 14 no. 1, pp. 1502-1515, DOI: 10.3390/ijms14011502, 2013.
[179] H. Badshah, T. H. Kim, M. O. Kim, "Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro," Neurochemistry International, vol. 80, pp. 51-59, DOI: 10.1016/j.neuint.2014.10.009, 2015.
[180] M. Y. Yamakawa, K. Uchino, Y. Watanabe, T. Adachi, M. Nakanishi, H. Ichino, K. Hongo, T. Mizobata, S. Kobayashi, K. Nakashima, Y. Kawata, "Anthocyanin suppresses the toxicity of A β deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer's disease," Nutritional Neuroscience, vol. 19 no. 1, pp. 32-42, DOI: 10.1179/1476830515Y.0000000042, 2016.
[181] P. H. Shih, C. H. Wu, C. T. Yeh, G. C. Yen, "Protective effects of anthocyanins against amyloid β -peptide-induced damage in neuro-2A cells," Journal of Agricultural and Food Chemistry, vol. 59 no. 5, pp. 1683-1689, DOI: 10.1021/jf103822h, 2011.
[182] S. A. Shah, F. U. Amin, M. Khan, M. N. Abid, S. U. Rehman, T. H. Kim, M. W. Kim, M. O. Kim, "Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain," Journal of Neuroinflammation, vol. 13 no. 1,DOI: 10.1186/s12974-016-0752-y, 2016.
[183] J. S. Yang, S. Perveen, T. J. Ha, S. Y. Kim, S. H. Yoon, "Cyanidin-3-glucoside inhibits glutamate-induced Zn 2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca 2+ -induced mitochondrial depolarization and formation of reactive oxygen species," Brain Research, vol. 1606,DOI: 10.1016/j.brainres.2015.02.028, 2015.
[184] T. Ali, T. Kim, S. U. Rehman, M. S. Khan, F. U. Amin, M. Khan, M. Ikram, M. O. Kim, "Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer's disease," Molecular Neurobiology, vol. 55 no. 7, pp. 6076-6093, DOI: 10.1007/s12035-017-0798-6, 2018.
[185] R. Hornedo-Ortega, M. A. Álvarez-Fernández, A. B. Cerezo, T. Richard, A. M. A. Troncoso, M. A. C. Garcia-Parrilla, "Protocatechuic acid: inhibition of fibril formation, destabilization of preformed fibrils of amyloid- β and α -synuclein, and neuroprotection," Journal of Agricultural and Food Chemistry, vol. 64 no. 41, pp. 7722-7732, DOI: 10.1021/acs.jafc.6b03217, 2016.
[186] L. A. Koza, A. N. Winter, J. Holsopple, A. N. Baybayon-Grandgeorge, C. Pena, J. R. Olson, R. C. Mazzarino, D. Patterson, D. A. Linseman, "Protocatechuic acid extends survival, improves motor function, diminishes gliosis, and sustains neuromuscular junctions in the hSOD1G93A mouse model of amyotrophic lateral sclerosis," Nutrients, vol. 12 no. 6,DOI: 10.3390/nu12061824, 2020.
[187] A. N. Winter, P. C. Bickford, "Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease," Antioxidants, vol. 8 no. 9,DOI: 10.3390/antiox8090333, 2019.
[188] J. Yu, Y. Jia, Y. Guo, G. Chang, W. Duan, M. Sun, B. Li, C. Li, "Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level," FEBS Letters, vol. 584 no. 13, pp. 2921-2925, DOI: 10.1016/j.febslet.2010.05.011, 2010.
[189] R. Srividhya, P. Kalaiselvi, "Neuroprotective potential of epigallo catechin-3-gallate in PC-12 cells," Neurochemical Research, vol. 38 no. 3, pp. 486-493, DOI: 10.1007/s11064-012-0940-9, 2013.
[190] Y. Avramovich-Tirosh, L. Reznichenko, T. Mit, H. Zheng, M. Fridkin, O. Weinreb, S. Mandel, M. B. Youdim, "Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG," Current Alzheimer Research, vol. 4 no. 4, pp. 403-411, DOI: 10.2174/156720507781788927, 2007.
[191] X. Zhong, M. Liu, W. Yao, K. Du, M. He, X. Jin, L. Jiao, G. Ma, B. Wei, M. Wei, "Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF- κ B pathway," Molecular Nutrition & Food Research, vol. 63 no. 21, article e1801230,DOI: 10.1002/mnfr.201801230, 2019.
[192] S. Mandel, L. Reznichenko, T. Amit, M. B. Youdim, "Green tea polyphenol (-)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway," Neurotoxicity Research, vol. 5 no. 6, pp. 419-424, DOI: 10.1007/BF03033171, 2003.
[193] J. B. Liu, L. Zhou, Y. Z. Wang, X. Wang, Y. Zhou, W. Z. Ho, J. L. Li, "Neuroprotective activity of (-)-epigallocatechin gallate against lipopolysaccharide-mediated cytotoxicity," Journal of Immunology Research, vol. 2016,DOI: 10.1155/2016/4962351, 2016.
[194] M. He, M. Y. Liu, S. Wang, Q. S. Tang, W. F. Yao, H. S. Zhao, M. J. Wei, "Research on EGCG improving the degenerative changes of the brain in AD model mice induced with chemical drugs," Zhong Yao Cai, vol. 35 no. 10, pp. 1641-1644, 2012.
[195] D. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore, E. E. Wanker, "EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers," Nature Structural & Molecular Biology, vol. 15 no. 6, pp. 558-566, DOI: 10.1038/nsmb.1437, 2008.
[196] L. Reznichenko, T. Amit, H. Zheng, Y. Avramovich-Tirosh, M. B. Youdim, O. Weinreb, S. Mandel, "Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer's disease," Journal of Neurochemistry, vol. 97 no. 2, pp. 527-536, DOI: 10.1111/j.1471-4159.2006.03770.x, 2006.
[197] J. C.-C. Wei, H. C. Huang, W. J. Chen, C. N. Huang, C. H. Peng, C. L. Lin, "Epigallocatechin gallate attenuates amyloid β -induced inflammation and neurotoxicity in EOC 13.31 microglia," European Journal of Pharmacology, vol. 770, pp. 16-24, DOI: 10.1016/j.ejphar.2015.11.048, 2016.
[198] S. H. Koh, S. H. Kim, H. Kwon, Y. Park, K. S. Kim, C. W. Song, J. Kim, M. H. Kim, H. J. Yu, J. S. Henkel, H. K. Jung, "Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3," Molecular Brain Research, vol. 118 no. 1-2, pp. 72-81, DOI: 10.1016/j.molbrainres.2003.07.003, 2003.
[199] D. L. McKay, J. B. Blumberg, "A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.)," Phytotherapy Research, vol. 20 no. 8, pp. 619-633, DOI: 10.1002/ptr.1936, 2006.
[200] C. Anusha, T. Sumathi, L. D. Joseph, "Protective role of apigenin on rotenone induced rat model of Parkinson's disease: suppression of neuroinflammation and oxidative stress mediated apoptosis," Chemico-Biological Interactions, vol. 269, pp. 67-79, DOI: 10.1016/j.cbi.2017.03.016, 2017.
[201] L. Chen, W. Xie, W. Xie, W. Zhuang, C. Jiang, N. Liu, "Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats," Archives of Gerontology and Geriatrics, vol. 73, pp. 29-36, DOI: 10.1016/j.archger.2017.07.004, 2017.
[202] J. S. Choi, M. N. Islam, M. Y. Ali, E. J. Kim, Y. M. Kim, H. A. Jung, "Effects of C -glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin," Food and Chemical Toxicology, vol. 64, pp. 27-33, DOI: 10.1016/j.fct.2013.11.020, 2014.
[203] F. Zhang, F. Li, G. Chen, "Neuroprotective effect of apigenin in rats after contusive spinal cord injury," Neurological Sciences, vol. 35 no. 4, pp. 583-588, DOI: 10.1007/s10072-013-1566-7, 2014.
[204] L. Zhao, J. L. Wang, R. Liu, X. X. Li, J. F. Li, L. Zhang, "Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer's disease mouse model," Molecules, vol. 18 no. 8, pp. 9949-9965, DOI: 10.3390/molecules18089949, 2013.
[205] R. Liu, T. Zhang, H. Yang, X. Lan, J. Ying, G. Du, "The flavonoid apigenin protects brain neurovascular coupling against amyloid- β ₂₅-₃₅-induced toxicity in mice," Journal of Alzheimer's Disease, vol. 24 no. 1, pp. 85-100, DOI: 10.3233/JAD-2010-101593, 2011.
[206] R. Li, X. Wang, T. Qin, R. Qu, S. Ma, "Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1 β production and NLRP3 inflammasome activation in the rat brain," Behavioural Brain Research, vol. 296,DOI: 10.1016/j.bbr.2015.09.031, 2016.
[207] S. P. Patil, P. D. Jain, J. S. Sancheti, P. J. Ghumatkar, R. Tambe, S. Sathaye, "RETRACTED: Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice," Neuropharmacology, vol. 86, pp. 192-202, DOI: 10.1016/j.neuropharm.2014.07.012, 2014.
[208] Y. H. Siddique, S. Jyoti, "Alteration in biochemical parameters in the brain of transgenic _Drosophila melanogaster_ model of Parkinson 's disease exposed to apigenin," Integrative Medicine Research, vol. 6 no. 3, pp. 245-253, DOI: 10.1016/j.imr.2017.04.003, 2017.
[209] Y. D. Xi, X. Y. Li, J. Ding, H. L. Yu, W. W. Ma, L. H. Yuan, J. Wu, R. Xiao, "Soy isoflavone alleviates A β 1-42-induced impairment of learning and memory ability through the regulation of RAGE/LRP-1 in neuronal and vascular tissue," Current Neurovascular Research, vol. 10 no. 2, pp. 144-156, DOI: 10.2174/1567202611310020007, 2013.
[210] M. S. Uddin, M. T. Kabir, "Emerging signal regulating potential of genistein against Alzheimer's disease: a promising molecule of Interest," Frontiers in Cell and Development Biology, vol. 7,DOI: 10.3389/fcell.2019.00197, 2019.
[211] E. Arbabi, G. Hamidi, S. A. Talaei, M. Salami, "Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism," Iranian Journal of Basic Medical Sciences, vol. 19 no. 12, pp. 1285-1290, DOI: 10.22038/ijbms.2016.7911, 2016.
[212] S. Ye, T. T. Wang, B. Cai, Y. Wang, J. Li, J. X. Zhan, G. M. Shen, "Genistein protects hippocampal neurons against injury by regulating calcium/calmodulin dependent protein kinase IV protein levels in Alzheimer's disease model rats," Neural Regeneration Research, vol. 12 no. 9, pp. 1479-1484, DOI: 10.4103/1673-5374.215260, 2017.
[213] R. Wang, J. Tu, Q. Zhang, X. Zhang, Y. Zhu, W. Ma, C. Cheng, D. W. Brann, F. Yang, "Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling," Hippocampus, vol. 23 no. 7, pp. 634-647, DOI: 10.1002/hipo.22126, 2013.
[214] Y. D. Xi, H. L. Yu, J. Ding, W. W. Ma, L. H. Yuan, J. F. Feng, Y. X. Xiao, R. Xiao, "Flavonoids protect cerebrovascular endothelial cells through Nrf2 and PI3K from β -amyloid peptide-induced oxidative damage," Current Neurovascular Research, vol. 9 no. 1, pp. 32-41, DOI: 10.2174/156720212799297092, 2012.
[215] S. R. Jahromi, S. R. Arrefhosseini, A. Ghaemi, A. Alizadeh, F. Sabetghadam, M. Togha, "Effect of oral genistein administration in early and late phases of allergic encephalomyelitis," Iranian Journal of Basic Medical Sciences, vol. 17 no. 7, pp. 509-515, 2014.
[216] N. Kumar, N. Goel, "Phenolic acids: natural versatile molecules with promising therapeutic applications," Biotechnology Reports, vol. 24, article e00370,DOI: 10.1016/j.btre.2019.e00370, 2019.
[217] B. A. Khan, T. Mahmood, F. Menaa, Y. Shahzad, A. M. Yousaf, T. Hussain, S. D. Ray, "New perspectives on the efficacy of gallic acid in cosmetics & nanocosmeceuticals," Current Pharmaceutical Design, vol. 24 no. 43, pp. 5181-5187, DOI: 10.2174/1381612825666190118150614, 2018.
[218] M. Daglia, A. Di Lorenzo, S. F. Nabavi, Z. S. Talas, S. M. Nabavi, "Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat!," Current Pharmaceutical Biotechnology, vol. 15 no. 4, pp. 362-372, DOI: 10.2174/138920101504140825120737, 2014.
[219] T. Mori, N. Koyama, T. Yokoo, T. Segawa, M. Maeda, D. Sawmiller, J. Tan, T. Town, "Gallic acid is a dual α / β -secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice," Journal of Biological Chemistry, vol. 295 no. 48, pp. 16251-16266, DOI: 10.1074/jbc.RA119.012330, 2020.
[220] M. J. Kim, A. R. Seong, J. Y. Yoo, C. H. Jin, Y. H. Lee, Y. J. Kim, J. Lee, W. J. Jun, H. G. Yoon, "Gallic acid, a histone acetyltransferase inhibitor, suppresses β -amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation," Molecular Nutrition & Food Research, vol. 55 no. 12, pp. 1798-1808, DOI: 10.1002/mnfr.201100262, 2011.
[221] S. Hajipour, A. Sarkaki, Y. Farbood, A. Eidi, P. Mortazavi, Z. Valizadeh, "Effect of gallic acid on dementia type of Alzheimer disease in rats: electrophysiological and histological studies," Basic and Clinical Neuroscience, vol. 7 no. 2, pp. 97-106, DOI: 10.15412/J.BCN.03070203, 2016.
[222] Y. Liu, T. L. Pukala, I. F. Musgrave, D. M. Williams, F. C. Dehle, J. A. Carver, "Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation," Bioorganic & Medicinal Chemistry Letters, vol. 23 no. 23, pp. 6336-6340, DOI: 10.1016/j.bmcl.2013.09.071, 2013.
[223] Y. Chandrasekhar, G. Phani Kumar, E. M. Ramya, K. R. Anilakumar, "Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line," Neurochemical Research, vol. 43 no. 6, pp. 1150-1160, DOI: 10.1007/s11064-018-2530-y, 2018.
[224] M. T. Mansouri, Y. Farbood, M. J. Sameri, A. Sarkaki, B. Naghizadeh, M. Rafeirad, "Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats," Food Chemistry, vol. 138 no. 2-3, pp. 1028-1033, DOI: 10.1016/j.foodchem.2012.11.022, 2013.
[225] M. J. Sameri, A. Sarkaki, Y. Farbood, S. M. Mansouri, "Motor disorders and impaired electrical power of pallidal EEG improved by gallic acid in animal model of Parkinson's disease," Pakistan Journal of Biological Sciences, vol. 14 no. 24, pp. 1109-1116, DOI: 10.3923/pjbs.2011.1109.1116, 2011.
[226] S. Maya, T. Prakash, D. Goli, "Evaluation of neuroprotective effects of wedelolactone and gallic acid on aluminium-induced neurodegeneration: Relevance to sporadic amyotrophic lateral sclerosis," European Journal of Pharmacology, vol. 835, pp. 41-51, DOI: 10.1016/j.ejphar.2018.07.058, 2018.
[227] A. Abdullah, M. Maged, M. I. Hairul-Islam, I. A. Osama, H. Maha, A. Manal, H. Hamza, "Activation of aryl hydrocarbon receptor signaling by a novel agonist ameliorates autoimmune encephalomyelitis," PLoS One, vol. 14 no. 4, article e0215981,DOI: 10.1371/journal.pone.0215981, 2019.
[228] M. Naveed, V. Hejazi, M. Abbas, A. A. Kamboh, G. J. Khan, M. Shumzaid, F. Ahmad, D. Babazadeh, X. FangFang, F. Modarresi-Ghazani, L. WenHua, Z. XiaoHui, "Chlorogenic acid (CGA): a pharmacological review and call for further research," Biomedicine & Pharmacotherapy, vol. 97, pp. 67-74, DOI: 10.1016/j.biopha.2017.10.064, 2018.
[229] W. Gao, C. Wang, L. Yu, T. Sheng, Z. Wu, X. Wang, D. Zhang, Y. Lin, Y. Gong, "Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway," BioMed Research International, vol. 2019,DOI: 10.1155/2019/6769789, 2019.
[230] S. Shan, L. Tian, R. Fang, "Chlorogenic acid exerts beneficial effects in 6-hydroxydopamine-induced neurotoxicity by inhibition of endoplasmic reticulum stress," Medical Science Monitor, vol. 25, pp. 453-459, DOI: 10.12659/MSM.911166, 2019.
[231] M. Shi, F. Sun, Y. Wang, J. Kang, S. Zhang, H. Li, "CGA restrains the apoptosis of A β 25-35-induced hippocampal neurons," International Journal of Neuroscience, vol. 130 no. 7, pp. 700-707, DOI: 10.1080/00207454.2019.1702547, 2020.
[232] L. Gao, X. Li, S. Meng, T. Ma, L. Wan, S. Xu, "Chlorogenic acid alleviates A β 25-35 -Induced autophagy and cognitive impairment via the mTOR/TFEB signaling Pathway," Drug Design, Development and Therapy, vol. Volume 14, pp. 1705-1716, DOI: 10.2147/DDDT.S235969, 2020.
[233] M. Teraoka, K. Nakaso, C. Kusumoto, S. Katano, N. Tajima, A. Yamashita, T. Zushi, S. Ito, T. Matsura, "Cytoprotective effect of chlorogenic acid against α -synuclein-related toxicity in catecholaminergic PC12 cells," Journal of Clinical Biochemistry and Nutrition, vol. 51 no. 2, pp. 122-127, DOI: 10.3164/jcbn.D-11-00030, 2012.
[234] S. S. Singh, S. N. Rai, H. Birla, W. Zahra, G. Kumar, M. R. Gedda, N. Tiwari, R. Patnaik, R. K. Singh, S. P. Singh, "Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse," Frontiers in Pharmacology, vol. 9,DOI: 10.3389/fphar.2018.00757, 2018.
[235] S. S. Singh, S. N. Rai, H. Birla, W. Zahra, A. S. Rathore, H. Dilnashin, R. Singh, S. P. Singh, "Neuroprotective Effect of Chlorogenic Acid on Mitochondrial Dysfunction-Mediated Apoptotic Death of DA Neurons in a Parkinsonian Mouse Model," Oxidative Medicine and Cellular Longevity, vol. 2020,DOI: 10.1155/2020/6571484, 2020.
[236] I. Miyazaki, N. Isooka, K. Wada, R. Kikuoka, Y. Kitamura, M. Asanuma, "Effects of enteric environmental modification by coffee components on neurodegeneration in rotenone-treated mice," Cell, vol. 8 no. 3,DOI: 10.3390/cells8030221, 2019.
[237] F. Visioli, M. Franco, E. Toledo, J. Luchsinger, W. C. Willett, F. B. Hu, M. A. Martinez-Gonzalez, "Olive oil and prevention of chronic diseases: summary of an international conference," Nutrition, Metabolism, and Cardiovascular Diseases, vol. 28 no. 7, pp. 649-656, DOI: 10.1016/j.numecd.2018.04.004, 2018.
[238] S. Cicerale, L. Lucas, R. Keast, "Biological activities of phenolic compounds present in virgin olive oil," International Journal of Molecular Sciences, vol. 11 no. 2, pp. 458-479, DOI: 10.3390/ijms11020458, 2010.
[239] F. Visioli, A. Poli, C. Gall, "Antioxidant and other biological activities of phenols from olives and olive oil," Medicinal Research Reviews, vol. 22 no. 1, pp. 65-75, DOI: 10.1002/med.1028, 2002.
[240] S. Rigacci, "Olive oil phenols as promising multi-targeting agents against Alzheimer's disease," Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases, vol. 863, 2015.
[241] G. Di Rosa, G. Brunetti, M. Scuto, A. Trovato Salinaro, E. J. Calabrese, R. Crea, C. Schmitz-Linneweber, V. Calabrese, N. Saul, "Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson's models," International Journal of Molecular Sciences, vol. 21 no. 11, 2020.
[242] I. Tasset, A. J. Pontes, A. J. Hinojosa, R. De la Torre, I. Túnez, "Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington's disease-like rat model," Nutritional Neuroscience, vol. 14 no. 3, pp. 106-111, 2011.
[243] P. Costanzo, M. Oliverio, J. Maiuolo, S. Bonacci, G. De Luca, M. Masullo, R. Arcone, A. Procopio, "Novel hydroxytyrosol-donepezil hybrids as potential antioxidant and neuroprotective agents," Frontiers in Chemistry, vol. 9, article 741444, 2021.
[244] S. Schaffer, M. Podstawa, F. Visioli, P. Bogani, W. E. Müller, G. P. Eckert, "Hydroxytyrosol-rich olive mill wastewater extract protects brain cells in vitro and ex vivo," Journal of Agricultural and Food Chemistry, vol. 55 no. 13, pp. 5043-5049, 2007.
[245] E. Gallardo, R. Palma-Valdés, J. L. Espartero, M. Santiago, "In vivo striatal measurement of hydroxytyrosol, and its metabolite (homovanillic alcohol), compared with its derivative nitrohydroxytyrosol," Neuroscience Letters, vol. 579, pp. 173-176, 2014.
[246] M. Y. Lin, Z. H. Sheng, "Regulation of mitochondrial transport in neurons," Experimental Cell Research, vol. 334 no. 1, pp. 35-44, 2015.
[247] F. Visioli, M. Rodríguez-Pérez, Ó. Gómez-Torres, C. Pintado-Losa, E. Burgos-Ramos, "Hydroxytyrosol improves mitochondrial energetics of a cellular model of Alzheimer's disease," Nutritional Neuroscience,DOI: 10.1080/1028415X.2020.1829344, 2020.
[248] Y. Peng, C. Hou, Z. Yang, C. Li, L. Jia, J. Liu, Y. Tang, L. Shi, Y. Li, J. Long, J. Liu, "Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice," Molecular Nutrition & Food Research, vol. 60 no. 11, pp. 2331-2342, 2016.
[249] M. C. Crespo, J. Tomé‐Carneiro, C. Pintado, A. Dávalos, F. Visioli, E. Burgos‐Ramos, "Hydroxytyrosol restores proper insulin signaling in an astrocytic model of Alzheimer's disease," BioFactors, vol. 43 no. 4, pp. 540-548, 2017.
[250] G. Pérez-Barrón, S. Montes, Y. Aguirre-Vidal, M. Santiago, E. Gallardo, J. L. Espartero, C. Ríos, A. Monroy-Noyola, "Antioxidant effect of hydroxytyrosol, hydroxytyrosol acetate and nitrohydroxytyrosol in a rat MPP(+) model of Parkinson's disease," Neurochemical Research, vol. 46 no. 11, pp. 2923-2935, 2021.
[251] G. A. Perez-Barron, S. Montes, M. Rubio-Osornio, J. G. Avila-Acevedo, S. Garcia-Jimenez, L. C. Rios, A. Monroy-Noyola, "Hydroxytyrosol inhibits MAO isoforms and prevents neurotoxicity inducible by MPP+ invivo," Frontiers in Bioscience, vol. 12, pp. 25-37, 2020.
[252] D. S. Goldstein, Y. Jinsmaa, P. Sullivan, C. Holmes, I. J. Kopin, Y. Sharabi, "3,4-Dihydroxyphenylethanol (hydroxytyrosol) mitigates the increase in spontaneous oxidation of dopamine during monoamine oxidase inhibition in PC12 cells," Neurochemical Research, vol. 41 no. 9, pp. 2173-2178, 2016.
[253] G. Ran, L. Ying, L. Li, Q. Yan, W. Yi, C. Ying, H. Wu, X. Ye, "Resveratrol ameliorates diet-induced dysregulation of lipid metabolism in zebrafish (Danio rerio)," PLoS One, vol. 12 no. 7, article e0180865, 2017.
[254] Y. L. Rao, B. Ganaraja, T. Joy, M. M. Pai, S. D. Ullal, B. V. Murlimanju, "Neuroprotective effects of resveratrol in Alzheimer's disease," Frontiers in Bioscience, vol. 12, pp. 139-149, 2020.
[255] I. H. Lee, "Mechanisms and disease implications of sirtuin-mediated autophagic regulation," Experimental & Molecular Medicine, vol. 51 no. 9, 2019.
[256] G. M. Pasinetti, J. Wang, P. Marambaud, M. Ferruzzi, P. Gregor, L. A. Knable, L. Ho, "Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington's disease and other neurodegenerative disorders," Experimental Neurology, vol. 232 no. 1, 2011.
[257] J. Bao, M. N. Sack, "Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors," Cellular and Molecular Life Sciences, vol. 67 no. 18, pp. 3073-3087, 2010.
[258] J. M. Smoliga, J. A. Baur, H. A. Hausenblas, "Resveratrol and health-a comprehensive review of human clinical trials," Molecular Nutrition & Food Research, vol. 55 no. 8, pp. 1129-1141, 2011.
[259] R. Corpas, C. Griñán-Ferré, E. Rodríguez-Farré, M. Pallàs, C. Sanfeliu, "Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement," Molecular Neurobiology, vol. 56 no. 2, pp. 1502-1516, 2019.
[260] S. Al-Edresi, I. Alsalahat, S. Freeman, H. Aojula, J. Penny, "Resveratrol-mediated cleavage of amyloid β 1-42 peptide: potential relevance to Alzheimer's disease," Neurobiology of Aging, vol. 94, pp. 24-33, 2020.
[261] J. H. Jang, Y. J. Surh, "Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death," Free Radical Biology and Medicine, vol. 34 no. 8, pp. 1100-1110, 2003.
[262] C. A. Krasinski, V. A. Ivancic, Q. Zheng, D. E. Spratt, N. D. Lazo, "Resveratrol sustains insulin-degrading enzyme activity toward A β 42," ACS Omega, vol. 3 no. 10, pp. 13275-13282, 2018.
[263] J. Xie, X. Li, Y. Zhou, J. Wu, Y. Tan, X. Ma, Y. Zhao, X. Liu, Y. Zhao, "Resveratrol abrogates hypoxia-induced up-regulation of exosomal amyloid- β partially by inhibiting CD147," Neurochemical Research, vol. 44 no. 5, pp. 1113-1126, 2019.
[264] A. Halle, V. Hornung, G. C. Petzold, C. R. Stewart, B. G. Monks, T. Reinheckel, K. A. Fitzgerald, E. Latz, K. J. Moore, D. T. Golenbock, "The NALP3 inflammasome is involved in the innate immune response to amyloid-beta," Nature Immunology, vol. 9 no. 8, pp. 857-865, 2008.
[265] Y. Qi, L. Shang, Z. Liao, H. Su, H. Jing, B. Wu, K. Bi, Y. Jia, "Intracerebroventricular injection of resveratrol ameliorated A β -induced learning and cognitive decline in mice," Metabolic Brain Disease, vol. 34 no. 1, pp. 257-266, 2019.
[266] L. Feng, L. Zhang, "Resveratrol suppresses A β -induced microglial activation through the TXNIP/TRX/NLRP3 signaling pathway," DNA and Cell Biology, vol. 38 no. 8, pp. 874-879, 2019.
[267] T. Huang, J. Zhao, D. Guo, H. Pang, Y. Zhao, J. Song, "Curcumin mitigates axonal injury and neuronal cell apoptosis through the PERK/Nrf2 signaling pathway following diffuse axonal injury," Neuroreport, vol. 29 no. 8, pp. 661-677, 2018.
[268] L. Liang, H. Wei, Y. Sun, J. Tian, "Anti-oxidative stress effects of curcumin on rat models of traumatic brain injury," Chinese Journal of Comparative Medicine, vol. 28 no. 4, pp. 73-80, 2018.
[269] M. C. Chiang, C. J. Nicol, Y. C. Cheng, "Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress," Neurochemistry International, vol. 115, 2018.
[270] Y. T. Dong, K. Cao, L. C. Tan, X. L. Wang, X. L. Qi, Y. Xiao, Z. Z. Guan, "Stimulation of SIRT1 attenuates the level of oxidative stress in the brains of APP/PS1 double transgenic mice and in primary neurons exposed to oligomers of the Amyloid- β peptide," Journal of Alzheimer's Disease, vol. 63 no. 1, pp. 283-301, 2018.
[271] Z. H. Wang, J. L. Zhang, Y. L. Duan, Q. S. Zhang, G. F. Li, D. L. Zheng, "MicroRNA-214 participates in the neuroprotective effect of resveratrol via inhibiting α -synuclein expression in MPTP-induced Parkinson's disease mouse," Biomedicine & Pharmacotherapy, vol. 74, pp. 252-256, 2015.
[272] L. F. Zhang, X. L. Yu, M. Ji, S. Y. Liu, X. L. Wu, Y. J. Wang, R. T. Liu, "Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α -synuclein mouse model of Parkinson's disease," Food & Function, vol. 9 no. 12, pp. 6414-6426, 2018.
[273] D. Xia, R. Sui, Z. Zhang, "Administration of resveratrol improved Parkinson's disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway," Journal of Cellular Biochemistry, vol. 120 no. 4, pp. 4942-4951, 2019.
[274] Y. Wu, X. Li, J. X. Zhu, W. Xie, W. Le, Z. Fan, J. Jankovic, T. Pan, "Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease," Neurosignals, vol. 19 no. 3, pp. 163-174, 2011.
[275] F. Jin, Q. Wu, Y. F. Lu, Q. H. Gong, J. S. Shi, "Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats," European Journal of Pharmacology, vol. 600 no. 1-3, pp. 78-82, 2008.
[276] Q. Liu, D. Zhu, P. Jiang, X. Tang, Q. Lang, Q. Yu, S. Zhang, Y. Che, X. Feng, "Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice," Behavioural Brain Research, vol. 367, pp. 10-18, 2019.
[277] P. Maher, R. Dargusch, L. Bodai, P. E. Gerard, J. M. Purcell, J. L. Marsh, "ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease," Human Molecular Genetics, vol. 20 no. 2, pp. 261-270, 2011.
[278] L. Naia, T. R. Rosenstock, A. M. Oliveira, S. I. Oliveira-Sousa, G. L. Caldeira, C. Carmo, M. N. Laço, M. R. Hayden, C. R. Oliveira, A. C. Rego, "Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington's disease models," Molecular Neurobiology, vol. 54 no. 7, pp. 5385-5399, 2017.
[279] G. Laudati, L. Mascolo, N. Guida, R. Sirabella, V. Pizzorusso, S. Bruzzaniti, A. Serani, G. Di Renzo, L. M. T. Canzoniero, L. Formisano, "Resveratrol treatment reduces the vulnerability of SH-SY5Y cells and cortical neurons overexpressing SOD1-G93A to Thimerosal toxicity through SIRT1/DREAM/PDYN pathway," Neurotoxicology, vol. 71, 2019.
[280] J. Wang, Y. Zhang, L. Tang, N. Zhang, D. Fan, "Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis," Neuroscience Letters, vol. 503 no. 3, pp. 250-255, 2011.
[281] R. Mancuso, J. del Valle, L. Modol, A. Martinez, A. B. Granado-Serrano, O. Ramirez-Núñez, M. Pallás, M. Portero-Otin, R. Osta, X. Navarro, "Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice," Neurotherapeutics, vol. 11 no. 2, pp. 419-432, 2014.
[282] H. R. Ghaiad, M. M. Nooh, M. M. El-Sawalhi, A. A. Shaheen, "Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: biochemical and histological study," Molecular Neurobiology, vol. 54 no. 5, pp. 3219-3229, 2017.
[283] K. S. Shindler, E. Ventura, M. Dutt, P. Elliott, D. C. Fitzgerald, A. Rostami, "Oral resveratrol reduces neuronal damage in a model of multiple sclerosis," Journal of Neuro-Ophthalmology, vol. 30 no. 4, pp. 328-339, 2010.
[284] F. Sato, N. E. Martinez, M. Shahid, J. W. Rose, N. G. Carlson, I. Tsunoda, "Resveratrol exacerbates both autoimmune and viral models of multiple sclerosis," The American Journal of Pathology, vol. 183 no. 5, pp. 1390-1396, 2013.
[285] D. Barker, "Lignans," Molecules, vol. 24 no. 7, 2019.
[286] I. Zanella, G. Biasiotto, F. Holm, D. di Lorenzo, "Cereal lignans, natural compounds of interest for human health?," Natural Product Communications, vol. 12 no. 1, pp. 139-146, 2017.
[287] K. W. Zeng, T. Zhang, H. Fu, G. X. Liu, X. M. Wang, "Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF- κ B signaling pathway in lipopolysaccharide-induced microglia," European Journal of Pharmacology, vol. 692 no. 1-3, pp. 29-37, 2012.
[288] Z. Li, X. C. Liu, R. Li, J. Chang, "Reduction of A β generation by Schisandrin B through restraining beta-secretase 1 transcription and translation," Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, vol. 24, pp. 1219-1224, 2018.
[289] E. P. Jiang, H. Li, C. R. Yu, C. Y. Yu, S. Jing, H. X. Sun, C. M. Wang, X. T. Fan, J. G. Chen, S. Wang, "Schisandrin B protects PC12 cells against oxidative stress of neurodegenerative diseases," Neuroreport, vol. 26 no. 6, pp. 360-366, 2015.
[290] M. Zhang, H. X. Zheng, Y. Y. Gao, B. Zheng, J. P. Liu, H. Wang, Z. J. Yang, Z. Y. Zhao, "The influence of Schisandrin B on a model of Alzheimer's disease using β -amyloid protein A β 1-42 -mediated damage in SH-SY5Y neuronal cell line and underlying mechanisms," Journal of Toxicology and Environmental Health, Part A, vol. 80 no. 22, pp. 1199-1205, 2017.
[291] M. Yan, S. Mao, H. Dong, B. Liu, Q. Zhang, G. Pan, Z. Fu, "Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35," Neural Regeneration Research, vol. 7 no. 9, pp. 652-658, 2012.
[292] X. L. Hu, C. Guo, J. Q. Hou, J. H. Feng, X. Q. Zhang, F. Xiong, W. C. Ye, H. Wang, "Stereoisomers of Schisandrin B are potent ATP competitive GSK-3 β Inhibitors with neuroprotective effects against Alzheimer's disease: stereochemistry and biological activity," ACS Chemical Neuroscience, vol. 10 no. 2, pp. 996-1007, 2019.
[293] Q. Ba, C. Cui, L. Wen, S. Feng, J. Zhou, K. Yang, "Schisandrin B shows neuroprotective effect in 6-OHDA-induced Parkinson's disease via inhibiting the negative modulation of miR-34a on Nrf2 pathway," Biomedicine & Pharmacotherapy, vol. 75, pp. 165-172, 2015.
[294] P. Y. Lam, K. M. Ko, "(-)Schisandrin B ameliorates paraquat-induced oxidative stress by suppressing glutathione depletion and enhancing glutathione recovery in differentiated PC12 cells," BioFactors, vol. 37 no. 1, pp. 51-57, 2011.
[295] P. Y. Lam, P. K. Leong, N. Chen, K. M. Ko, "Schisandrin B enhances the glutathione redox cycling and protects against oxidant injury in different types of cultured cells," BioFactors, vol. 37 no. 6, pp. 439-446, 2011.
[296] P. Y. Lam, K. M. Ko, "Beneficial effect of (-)Schisandrin B against 3-nitropropionic acid-induced cell death in PC12 cells," BioFactors, vol. 38 no. 3, pp. 219-225, 2012.
[297] L. R. Shen, L. D. Parnell, J. M. Ordovas, C. Q. Lai, "Curcumin and aging," BioFactors, vol. 39 no. 1, pp. 133-140, 2013.
[298] F. Yang, G. P. Lim, A. N. Begum, O. J. Ubeda, M. R. Simmons, S. S. Ambegaokar, P. P. Chen, R. Kayed, C. G. Glabe, S. A. Frautschy, G. M. Cole, "Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo," Journal of Biological Chemistry, vol. 280 no. 7, pp. 5892-5901, 2005.
[299] L. Baum, A. Ng, "Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models," Journal of Alzheimer's Disease, vol. 6 no. 4, pp. 367-377, 2004.
[300] S. Altinay, M. Cabalar, C. Isler, F. Yildirim, D. S. Celik, O. Zengi, A. Tas, A. Gulcubuk, "Is chronic curcumin supplementation neuroprotective against ischemia for antioxidant activity, neurological deficit, or neuronal apoptosis in an experimental stroke model?," Turkish Neurosurgery, vol. 27 no. 4, pp. 537-545, 2017.
[301] C. Y. Jin, J. D. Lee, C. Park, Y. H. Choi, G. Y. Kim, "Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia," Acta Pharmacologica Sinica, vol. 28 no. 10, pp. 1645-1651, 2007.
[302] J. S. Rane, P. Bhaumik, D. Panda, "Curcumin Inhibits tau aggregation and disintegrates preformed tau filaments in vitro," Journal of Alzheimer's Disease, vol. 60 no. 3, pp. 999-1014, 2017.
[303] Z. J. Liu, Z. H. Li, L. Liu, W. X. Tang, Y. Wang, M. R. Dong, C. Xiao, "Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer's disease," Frontiers in Pharmacology, vol. 7, 2016.
[304] P. K. Singh, V. Kotia, D. Ghosh, G. M. Mohite, A. Kumar, S. K. Maji, "Curcumin modulates α -synuclein aggregation and toxicity," ACS Chemical Neuroscience, vol. 4 no. 3, pp. 393-407, 2013.
[305] Q. Sang, X. Liu, L. Wang, L. Qi, W. Sun, W. Wang, Y. Sun, H. Zhang, "Curcumin protects an SH-SY5Y cell model of Parkinson's disease against toxic injury by regulating HSP90," Cellular Physiology and Biochemistry, vol. 51 no. 2, pp. 681-691, 2018.
[306] M. Verma, A. Sharma, S. Naidu, A. K. Bhadra, R. Kukreti, V. Taneja, "Curcumin prevents formation of polyglutamine aggregates by inhibiting Vps36, a component of the ESCRT-II complex," PLoS One, vol. 7 no. 8, article e42923, 2012.
[307] R. Sandhir, A. Yadav, A. Mehrotra, A. Sunkaria, A. Singh, S. Sharma, "Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington's disease," Neuromolecular Medicine, vol. 16 no. 1, pp. 106-118, 2014.
[308] L. Chico, E. C. Ienco, C. Bisordi, A. Lo Gerfo, L. Petrozzi, A. Petrucci, M. Mancuso, G. Siciliano, "Amyotrophic lateral sclerosis and oxidative stress: a double-blind therapeutic trial after curcumin supplementation," CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), vol. 17 no. 10, pp. 767-779, 2018.
[309] G. Scapagnini, C. Colombrita, M. Amadio, V. D'Agata, E. Arcelli, M. Sapienza, A. Quattrone, V. Calabrese, "Curcumin activates defensive genes and protects neurons against oxidative stress," Antioxidants & Redox Signaling, vol. 8 no. 3-4, pp. 395-403, 2006.
[310] Y. Li, J. Li, S. Li, Y. Li, X. Wang, B. Liu, Q. Fu, S. Ma, "Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK," Toxicology and Applied Pharmacology, vol. 286 no. 1, pp. 53-63, 2015.
[311] K. K. Cheng, C. F. Yeung, S. W. Ho, S. F. Chow, A. H. Chow, L. Baum, "Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer's disease Tg2576 mice," The AAPS Journal, vol. 15 no. 2, pp. 324-336, 2013.
[312] E. Kozioł, K. Skalicka-Woźniak, "Imperatorin-pharmacological meaning and analytical clues: profound investigation," Phytochemistry Reviews, vol. 15, pp. 627-649, 2016.
[313] A. A. Chowdhury, N. B. Gawali, P. Shinde, R. Munshi, A. R. Juvekar, "Imperatorin ameliorates lipopolysaccharide induced memory deficit by mitigating proinflammatory cytokines, oxidative stress and modulating brain-derived neurotropic factor," Cytokine, vol. 110, pp. 78-86, 2018.
[314] B. Budzynska, A. Boguszewska-Czubara, M. Kruk-Slomka, K. Skalicka-Wozniak, A. Michalak, I. Musik, G. Biala, "Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice," Psychopharmacology, vol. 232 no. 5, pp. 931-942, 2015.
[315] S. Granica, A. K. Kiss, M. Jarończyk, J. K. Maurin, A. P. Mazurek, Z. Czarnocki, "Synthesis of imperatorin analogs and their evaluation as acetylcholinesterase and butyrylcholinesterase inhibitors," Archiv der Pharmazie, vol. 346 no. 11, pp. 775-782, 2013.
[316] K. M. Varier, S. Thangarajan, A. Chinnasamy, "Effect of imperatorin in neuropathology of Parkinson's disease: an in silico study," Pharmaceutical and Clinical Research, vol. 9 no. 8, 2017.
[317] E. Lee, S. Y. Choi, J. H. Yang, Y. J. Lee, "Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway," The Korean Journal of Physiology & Pharmacology, vol. 20 no. 4, pp. 399-406, 2016.
[318] E. Park, H. S. Chun, "Protective effects of quercetin on dieldrin-induced endoplasmic reticulum stress and apoptosis in dopaminergic neuronal cells," Neuroreport, vol. 27 no. 15, pp. 1140-1146, 2016.
[319] D. E. Ehrnhoefer, M. Duennwald, P. Markovic, J. L. Wacker, S. Engemann, M. Roark, J. Legleiter, J. L. Marsh, L. M. Thompson, S. Lindquist, P. J. Muchowski, "Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models," Human Molecular Genetics, vol. 15 no. 18, pp. 2743-2751, 2006.
[320] S. H. Koh, S. M. Lee, H. Y. Kim, K. Y. Lee, Y. J. Lee, H. T. Kim, J. Kim, M. H. Kim, M. S. Hwang, C. Song, K. W. Yang, K. W. Lee, S. H. Kim, O. H. Kim, "The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice," Neuroscience Letters, vol. 395 no. 2, pp. 103-107, 2006.
[321] F. Herman, S. Westfall, J. Brathwaite, G. M. Pasinetti, "Suppression of presymptomatic oxidative stress and inflammation in neurodegeneration by grape-derived polyphenols," Frontiers in Pharmacology, vol. 9, 2018.
[322] J. González-Gallego, M. V. García-Mediavilla, S. Sánchez-Campos, M. J. Tuñón, "Fruit polyphenols, immunity and inflammation," British Journal of Nutrition, vol. 104, 2010.
[323] C. Dani, L. S. Oliboni, F. Agostini, C. Funchal, L. Serafini, J. A. Henriques, M. Salvador, "Phenolic content of grapevine leaves ( Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage," Toxicology In Vitro, vol. 24 no. 1, pp. 148-153, 2010.
[324] Q. Lian, Y. Nie, X. Zhang, B. Tan, H. Cao, W. Chen, W. Gao, J. Chen, Z. Liang, H. Lai, S. Huang, Y. Xu, W. Jiang, P. Huang, "Effects of grape seed proanthocyanidin on Alzheimer's disease in vitro and in vivo," Experimental and Therapeutic Medicine, vol. 12 no. 3, pp. 1681-1692, 2016.
[325] S. Ben Youssef, G. Brisson, H. Doucet-Beaupré, A. M. Castonguay, C. Gora, M. Amri, M. Lévesque, "Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson's disease," Nutritional Neuroscience, vol. 24 no. 3, pp. 197-211, 2021.
[326] J. Wang, C. M. Pfleger, L. Friedman, R. Vittorino, W. Zhao, X. Qian, L. Conley, L. Ho, G. M. Pasinetti, "Potential application of grape derived polyphenols in Huntington's disease," Translational Neuroscience, vol. 1 no. 2, pp. 95-100, 2010.
[327] E. Y. Hayden, G. Yamin, S. Beroukhim, B. Chen, M. Kibalchenko, L. Jiang, L. Ho, J. Wang, G. M. Pasinetti, D. B. Teplow, "Inhibiting amyloid β -protein assembly: Size-activity relationships among grape seed-derived polyphenols," Journal of Neurochemistry, vol. 135 no. 2, pp. 416-430, 2015.
[328] J. Wang, L. Ho, W. Zhao, K. Ono, C. Rosensweig, L. Chen, N. Humala, D. B. Teplow, G. M. Pasinetti, "Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease," Journal of Neuroscience, vol. 28 no. 25, pp. 6388-6392, 2008.
[329] J. Long, H. Gao, L. Sun, J. Liu, X. Zhao-Wilson, "Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson's disease model," Rejuvenation Research, vol. 12 no. 5, pp. 321-331, 2009.
[330] P. Goenka, A. Sarawgi, V. Karun, A. G. Nigam, S. Dutta, N. Marwah, "Camellia sinensis (tea): Implications and role in preventing dental decay," Pharmacognosy Reviews, vol. 7 no. 14, pp. 152-156, 2013.
[331] Z. Nouri, S. Fakhri, F. F. El-Senduny, N. Sanadgol, G. E. Abd-ElGhani, M. H. Farzaei, J. T. Chen, "On the neuroprotective effects of naringenin: pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective," Biomolecules, vol. 9 no. 11, 2019.
[332] Z. D. Zhou, S. P. Xie, W. T. Saw, P. G. H. Ho, H. Wang, Z. Lei, Z. Yi, E. K. Tan, "The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in Parkinson's disease (PD)," Cell, vol. 8 no. 8, 2019.
[333] H. J. Lim, S. B. Shim, S. W. Jee, S. H. Lee, C. J. Lim, J. T. Hong, Y. Y. Sheen, D. Y. Hwang, "Green tea catechin leads to global improvement among Alzheimer's disease-related phenotypes in NSE/hAPP-C105 Tg mice," The Journal of Nutritional Biochemistry, vol. 24 no. 7, pp. 1302-1313, 2013.
[334] T. Rho, M. S. Choi, M. Jung, H. W. Kil, Y. D. Hong, K. D. Yoon, "Identification of fermented tea (Camellia sinensis) polyphenols and their inhibitory activities against amyloid-beta aggregation," Phytochemistry, vol. 160, pp. 11-18, 2019.
[335] X. Li, S. D. Smid, J. Lin, Z. Gong, S. Chen, F. You, Y. Zhang, Z. Hao, H. Lin, X. Yu, X. Jin, "Neuroprotective and anti-amyloid β effect and main chemical profiles of white tea: comparison against green, oolong and black tea," Molecules, vol. 24 no. 10, 2019.
[336] S. Zhang, C. Duangjan, T. Tencomnao, J. Liu, J. Lin, M. Wink, "Neuroprotective effects of oolong tea extracts against glutamate-induced toxicity in cultured neuronal cells and β -amyloid-induced toxicity in Caenorhabditis elegans," Food & Function, vol. 11 no. 9, pp. 8179-8192, 2020.
[337] M. Chen, T. Wang, F. Yue, X. Li, P. Wang, Y. Li, P. Chan, S. Yu, "Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α -synuclein aggregation in MPTP-intoxicated parkinsonian monkeys," Neuroscience, vol. 286, pp. 383-392, 2015.
[338] Y. Tang, R. Xiong, A. G. Wu, C. L. Yu, Y. Zhao, W. Q. Qiu, X. L. Wang, J. F. Teng, J. Liu, H. X. Chen, J. M. Wu, "Polyphenols derived from lychee seed suppress A β (1-42)-induced neuroinflammation," International Journal of Molecular Sciences, vol. 19 no. 7, 2018.
[339] M. Paliga, Z. Novello, R. M. Dallago, J. Scapinello, J. D. Magro, M. Di Luccio, M. V. Tres, J. V. Oliveira, "Extraction, chemical characterization and antioxidant activity of Litchi chinensis Sonn. and Avena sativa L. seeds extracts obtained from pressurized n-butane," Journal of Food Science and Technology, vol. 54 no. 3, pp. 846-851, 2017.
[340] W. Q. Qiu, R. Pan, Y. Tang, X. G. Zhou, J. M. Wu, L. Yu, B. Y. Law, W. Ai, C. L. Yu, D. L. Qin, A. G. Wu, "Lychee seed polyphenol inhibits A β -induced activation of NLRP3 inflammasome via the LRP1/AMPK mediated autophagy induction," Biomedicine & Pharmacotherapy, vol. 130, article 110575, 2020.
[341] X. Wang, H. Zhang, J. Liu, R. Chen, Y. Tang, H. Chen, L. Gu, M. Li, S. Cao, D. Qin, J. Wu, "Inhibitory effect of lychee seed saponins on apoptosis induced by A β (25-35) through regulation of the apoptotic and NF- κ B pathways in PC12 cells," Nutrients, vol. 9 no. 4, 2017.
[342] X. Wang, J. Wu, C. Yu, Y. Tang, J. Liu, H. Chen, B. Jin, Q. Mei, S. Cao, D. Qin, "Lychee seed saponins improve cognitive function and prevent neuronal injury via inhibiting neuronal apoptosis in a rat model of Alzheimer's disease," Nutrients, vol. 9 no. 2, 2017.
[343] Y. Sun, A. Wu, X. Li, D. Qin, B. Jin, J. Liu, Y. Tang, J. Wu, C. Yu, "The seed of Litchi chinensis fraction ameliorates hippocampal neuronal injury in an A β (25-35)-induced Alzheimer's disease rat model via the AKT/GSK-3 β pathway," Pharmaceutical Biology, vol. 58 no. 1, pp. 35-43, 2020.
[344] Y. Tang, C. Yu, J. Wu, H. Chen, Y. Zeng, X. Wang, L. Yang, Q. Mei, S. Cao, D. Qin, "Lychee seed extract protects against neuronal injury and improves cognitive function in rats with type II diabetes mellitus with cognitive impairment," International Journal of Molecular Medicine, vol. 41 no. 1, pp. 251-263, 2018.
[345] R. Xiong, X. L. Wang, J. M. Wu, Y. Tang, W. Q. Qiu, X. Shen, J. F. Teng, R. Pan, Y. Zhao, L. Yu, J. Liu, "Polyphenols isolated from lychee seed inhibit Alzheimer's disease-associated Tau through improving insulin resistance via the IRS-1/PI3K/Akt/GSK-3 β pathway," Journal of Ethnopharmacology, vol. 251, article 112548, 2020.
[346] Y. Zhao, Y. Zeng, A. Wu, C. Yu, Y. Tang, X. Wang, R. Xiong, H. Chen, J. Wu, D. Qin, "Lychee seed fraction inhibits A β (1-42)-induced neuroinflammation in BV-2 cells via NF- κ B signaling pathway," Frontiers in Pharmacology, vol. 9, 2018.
[347] R. Xiong, X. G. Zhou, Y. Tang, J. M. Wu, Y. S. Sun, J. F. Teng, R. Pan, B. Y. K. Law, Y. Zhao, W. Q. Qiu, X. L. Wang, "Lychee seed polyphenol protects the blood-brain barrier through inhibiting A β (25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy in bEnd.3 cells and APP/PS1 mice," Phytotherapy Research, vol. 35 no. 2, pp. 954-973, 2021.
[348] H. Zhong, H. Yu, J. Chen, J. Sun, L. Guo, P. Huang, Y. Zhong, "Hydrogen sulfide and endoplasmic reticulum stress: a potential therapeutic target for central nervous system degeneration diseases," Frontiers in Pharmacology, vol. 11,DOI: 10.3389/fphar.2020.00702, 2020.
[349] T. Sakurai, K. Kitadate, H. Nishioka, H. Fujii, J. Ogasawara, T. Kizaki, S. Sato, T. Fujiwara, K. Akagawa, T. Izawa, H. Ohno, "Oligomerised lychee fruit-derived polyphenol attenuates cognitive impairment in senescence-accelerated mice and endoplasmic reticulum stress in neuronal cells," The British Journal of Nutrition, vol. 110 no. 9, pp. 1549-1558, 2013.
[350] Y. Qian, Y. Chen, L. Wang, J. Tou, "Effects of baicalin on inflammatory reaction, oxidative stress and PKDl and NF-kB protein expressions in rats with severe acute pancreatitis1," Acta Cirúrgica Brasileira, vol. 33 no. 7, pp. 556-564, DOI: 10.1590/s0102-865020180070000001, 2018.
[351] D. S. Chen, J. G. Cao, B. Zhu, Z. L. Wang, T. F. Wang, J. J. Tang, "Baicalin attenuates joint pain and muscle dysfunction by inhibiting muscular oxidative stress in an experimental osteoarthritis rat model," Archivum Immunologiae et Therapiae Experimentalis (Warsz), vol. 66 no. 6, pp. 453-461, 2018.
[352] J. Fang, H. Wang, J. Zhou, W. Dai, Y. Zhu, Y. Zhou, X. Wang, M. Zhou, "Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway," Drug Design, Development and Therapy, vol. 12, pp. 2497-2508, 2018.
[353] M. Yimam, B. P. Burnett, L. Brownell, Q. Jia, "Clinical and preclinical cognitive function improvement after oral treatment of a botanical composition composed of extracts fromScutellaria baicalensisandAcacia catechu," Behavioural Neurology, vol. 2016,DOI: 10.1155/2016/7240802, 2016.
[354] X. Zhang, Y. Yang, L. Du, W. Zhang, G. Du, "Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats," International Immunopharmacology, vol. 50, pp. 38-47, 2017.
[355] T. Y. Yune, J. Y. Lee, C. M. Cui, H. C. Kim, T. H. Oh, "Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats," Journal of Neurochemistry, vol. 110 no. 4, pp. 1276-1287, 2009.
[356] J. H. Lu, M. T. Ardah, S. S. Durairajan, L. F. Liu, L. X. Xie, W. F. Fong, M. Y. Hasan, J. D. Huang, O. M. El-Agnaf, M. Li, "Baicalein inhibits formation of α -synuclein oligomers within living cells and prevents A β peptide fibrillation and oligomerisation," Chembiochem, vol. 12 no. 4, pp. 615-624, 2011.
[357] S. K. Sonawane, A. A. Balmik, D. Boral, S. Ramasamy, S. Chinnathambi, "Baicalein suppresses Repeat Tau fibrillization by sequestering oligomers," Archives of Biochemistry and Biophysics, vol. 675, 2019.
[358] S. Zhang, J. Ye, G. Dong, "Neuroprotective effect of baicalein on hydrogen peroxide-mediated oxidative stress and mitochondrial dysfunction in PC12 cells," Journal of Molecular Neuroscience, vol. 40 no. 3, pp. 311-320, 2010.
[359] J. H. Choi, A. Y. Choi, H. Yoon, W. Choe, K. S. Yoon, J. Ha, E. J. Yeo, I. Kang, "Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction," Experimental & Molecular Medicine, vol. 42 no. 12, pp. 811-822, 2010.
[360] F. Yin, J. Liu, X. Ji, Y. Wang, J. Zidichouski, J. Zhang, "Baicalin prevents the production of hydrogen peroxide and oxidative stress induced by A β aggregation in SH-SY5Y cells," Neuroscience Letters, vol. 492 no. 2, pp. 76-79, 2011.
[361] L. Kuang, X. Cao, Z. Lu, "Baicalein protects against rotenone-induced neurotoxicity through induction of autophagy," Biological & Pharmaceutical Bulletin, vol. 40 no. 9, pp. 1537-1543, 2017.
[362] F. Q. Li, T. Wang, Z. Pei, B. Liu, J. S. Hong, "Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons," Journal of Neural Transmission (Vienna), vol. 112 no. 3, pp. 331-347, 2005.
[363] W. Rui, S. Li, H. Xiao, M. Xiao, J. Shi, "Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson's disease," International Journal of Neuropsychopharmacology, vol. 23 no. 11, pp. 762-773, 2020.
[364] L. Yu, A. G. Wu, V. K. Wong, L. Q. Qu, N. Zhang, D. L. Qin, W. Zeng, B. Tang, H. M. Wang, Q. Wang, B. Y. Law, "The new application of UHPLC-DAD-TOF/MS in identification of inhibitors on β -amyloid fibrillation from Scutellaria baicalensis," Frontiers in Pharmacology, vol. 10, 2019.
[365] S. Augustin, G. Rimbach, K. Augustin, R. Schliebs, S. Wolffram, R. Cermak, "Effect of a short- and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer's disease," Archives of Biochemistry and Biophysics, vol. 481 no. 2, pp. 177-182, DOI: 10.1016/j.abb.2008.10.032, 2009.
[366] S. Vijayakumaran, Y. Nakamura, J. M. Henley, D. L. Pountney, "Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates," Molecular and Cellular Neurosciences, vol. 101, 2019.
[367] M. Stark, C. Behl, "The Ginkgo biloba extract EGb 761 modulates proteasome activity and polyglutamine protein aggregation," Evidence-Based Complementary and Alternative Medicine, vol. 2014,DOI: 10.1155/2014/940186, 2014.
[368] S. Verma, S. Sharma, P. Ranawat, B. Nehru, "Modulatory effects of Ginkgo biloba against amyloid aggregation through induction of heat shock proteins in aluminium induced neurotoxicity," Neurochemical Research, vol. 45 no. 2, pp. 465-490, 2020.
[369] L. Chen, C. Zhang, Y. Han, X. Meng, Y. Zhang, H. Chu, H. Ma, "Gingko biloba Extract (EGb) inhibits oxidative stress in neuro 2A cells overexpressing APPsw," BioMed Research International, vol. 2019,DOI: 10.1155/2019/7034983, 2019.
[370] F. Di Meo, R. Cuciniello, S. Margarucci, P. Bergamo, O. Petillo, G. Peluso, S. Filosa, S. Crispi, "Ginkgo biloba prevents oxidative stress-induced apoptosis blocking p53 activation in neuroblastoma cells, " , Antioxidants (Basel), vol. 9 no. 4, 2020.
[371] M. Meng, D. Ai, L. Sun, X. Xu, X. Cao, "EGb 761 inhibits A β 1-42-induced neuroinflammatory response by suppressing P38 MAPK signaling pathway in BV-2 microglial cells," Neuroreport, vol. 30 no. 6, pp. 434-440, 2019.
[372] A. Mocan, L. Vlase, D. C. Vodnar, C. Bischin, D. Hanganu, A. M. Gheldiu, R. Oprean, R. Silaghi-Dumitrescu, G. Crișan, "Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves," Molecules, vol. 19 no. 7, pp. 10056-10073, 2014.
[373] Z. Q. Zhou, J. Xiao, H. X. Fan, Y. Yu, R. R. He, X. L. Feng, H. Kurihara, K. F. So, X. S. Yao, H. Gao, "Polyphenols from wolfberry and their bioactivities," Food Chemistry, vol. 214, pp. 644-654, 2017.
[374] Y. Gao, Y. Wei, Y. Wang, F. Gao, Z. Chen, "Lycium barbarum: a traditional Chinese herb and a promising anti-aging agent," Aging and Disease, vol. 8 no. 6, pp. 778-791, 2017.
[375] X. Xing, F. Liu, J. Xiao, K. F. So, "Neuro-protective mechanisms of Lycium barbarum," Neuromolecular Medicine, vol. 18 no. 3, pp. 253-263, 2016.
[376] M. S. Yu, S. K. Leung, S. W. Lai, C. M. Che, S. Y. Zee, K. F. So, W. H. Yuen, R. C. Chang, "Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity," Experimental Gerontology, vol. 40 no. 8-9, pp. 716-727, 2005.
[377] Y. S. Ho, M. S. Yu, C. S. Lai, K. F. So, W. H. Yuen, R. C. Chang, "Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity," Brain research, vol. 1158, pp. 123-134, 2007.
[378] Q. Zhang, X. Du, Y. Xu, L. Dang, L. Xiang, J. Zhang, "The effects of Gouqi extracts on Morris maze learning in the APP/PS1 double transgenic mouse model of Alzheimer's disease," Experimental and Therapeutic Medicine, vol. 5 no. 5, pp. 1528-1530, 2013.
[379] O. J. Olatunji, H. Chen, Y. Zhou, "Lycium chinensis Mill attenuates glutamate induced oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating ROS and Ca(2+) generation," Neuroscience Letters, vol. 616, pp. 111-118, 2016.
[380] H. Gao, X. Yuan, Z. Wang, Q. Gao, J. Yang, "Profiles and neuroprotective effects of Lycium ruthenicum polyphenols against oxidative stress-induced cytotoxicity in PC12 cells," Journal of Food Biochemistry, vol. 44 no. 1, article e13112, 2020.
[381] X. L. Yao, W. L. Wu, M. Y. Zheng, W. Li, C. H. Ye, X. L. Lu, "Protective effects of Lycium barbarum extract against MPP(+) -induced neurotoxicity in Caenorhabditis elegans and PC12 cells," Zhong Yao Cai, vol. 34 no. 8, pp. 1241-1246, 2011.
[382] W. Tang, H. Zhu, Y. Feng, R. Guo, D. Wan, "The impact of gut microbiota disorders on the blood-brain barrier," Infection and Drug Resistance, vol. 13, pp. 3351-3363, 2020.
[383] L. Jiang, S. Li, J. Zheng, Y. Li, H. Huang, "Recent progress in microfluidic models of the blood-brain barrier," Micromachines (Basel), vol. 10 no. 6,DOI: 10.3390/mi10060375, 2019.
[384] S. Scioli Montoto, G. Muraca, M. E. Ruiz, "Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects," Frontiers in Molecular Biosciences, vol. 7, 2020.
[385] Q. Zhao, R. Qu, L. Teng, C. Yin, Y. Yuan, "HO-1 protects the nerves of rats with cerebral hemorrhage by regulating the PI3K/AKT signaling pathway," Neuropsychiatric Disease and Treatment, vol. 15, pp. 1459-1468, 2019.
[386] K. Ogawa, N. Kato, S. Kawakami, "Recent strategies for targeted brain drug delivery," Chemical & Pharmaceutical Bulletin (Tokyo), vol. 68 no. 7, pp. 567-582, 2020.
[387] A. C. Silveira, J. P. Dias, V. M. Santos, P. F. Oliveira, M. G. Alves, L. Rato, B. M. Silva, "The action of polyphenols in diabetes mellitus and Alzheimer's disease: a common agent for overlapping pathologies," Current Neuropharmacology, vol. 17 no. 7, pp. 590-613, 2019.
[388] S. Schaffer, B. Halliwell, "Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations," Genes & Nutrition, vol. 7 no. 2, pp. 99-109, 2012.
[389] M. Leclerc, S. Dudonné, F. Calon, "Can natural products exert neuroprotection without crossing the blood-brain barrier?," International Journal of Molecular Sciences, vol. 22 no. 7, 2021.
[390] S. Askarova, B. Umbayev, A. R. Masoud, A. Kaiyrlykyzy, Y. Safarova, A. Tsoy, F. Olzhayev, A. Kushugulova, "The links between the gut microbiome, aging, modern lifestyle and Alzheimer's disease," Frontiers in Cellular and Infection Microbiology, vol. 10,DOI: 10.3389/fcimb.2020.00104, 2020.
[391] X. Fan, B. Liu, J. Zhou, X. Gu, Y. Zhou, Y. Yang, F. Guo, X. Wei, H. Wang, N. Si, J. Yang, B. Bian, H. Zhao, "High-fat diet alleviates neuroinflammation and metabolic disorders of APP/PS1 mice and the intervention with Chinese medicine," Frontiers in Aging Neuroscience, vol. 13, 2021.
[392] Z. Z. Sun, X. Y. Li, S. Wang, L. Shen, H. F. Ji, "Bidirectional interactions between curcumin and gut microbiota in transgenic mice with Alzheimer's disease," Applied Microbiology and Biotechnology, vol. 104 no. 8, pp. 3507-3515, 2020.
[393] L. Shen, L. Liu, H. F. Ji, "Alzheimer's disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state," Journal of Alzheimer's Disease, vol. 56 no. 1, pp. 385-390, 2017.
[394] N. M. Vogt, R. L. Kerby, K. A. Dill-McFarland, S. J. Harding, A. P. Merluzzi, S. C. Johnson, C. M. Carlsson, S. Asthana, H. Zetterberg, K. Blennow, B. B. Bendlin, F. E. Rey, "Gut microbiome alterations in Alzheimer's disease," Scientific Reports, vol. 7 no. 1, 2017.
[395] A. Cattaneo, N. Cattane, S. Galluzzi, S. Provasi, N. Lopizzo, C. Festari, C. Ferrari, U. P. Guerra, B. Paghera, C. Muscio, A. Bianchetti, G. D. Volta, M. Turla, M. S. Cotelli, M. Gennuso, A. Prelle, O. Zanetti, G. Lussignoli, D. Mirabile, D. Bellandi, S. Gentile, G. Belotti, D. Villani, T. Harach, T. Bolmont, A. Padovani, M. Boccardi, G. B. Frisoni, "Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly," Neurobiology of Aging, vol. 49, pp. 60-68, 2017.
[396] S. Burapan, M. Kim, J. Han, "Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota," Journal of Agricultural and Food Chemistry, vol. 65 no. 16, pp. 3305-3310, 2017.
[397] P. T. Chen, Z. T. Chen, W. C. Hou, L. C. Yu, R. P. Chen, "Polyhydroxycurcuminoids but not curcumin upregulate neprilysin and can be applied to the prevention of Alzheimer's disease," Scientific Reports, vol. 6, 2016.
[398] S. B. Roberts, M. A. Franceschini, R. E. Silver, S. F. Taylor, A. B. de Sa, R. Có, A. Sonco, A. Krauss, A. Taetzsch, P. Webb, S. K. Das, C. Y. Chen, B. L. Rogers, E. Saltzman, P. Y. Lin, N. Schlossman, W. Pruzensky, C. Balé, K. K. H. Chui, P. Muentener, "Effects of food supplementation on cognitive function, cerebral blood flow, and nutritional status in young children at risk of undernutrition: randomized controlled trial," BMJ, vol. 370, 2020.
[399] D. Mastroiacovo, C. Kwik-Uribe, D. Grassi, S. Necozione, A. Raffaele, L. Pistacchio, R. Righetti, R. Bocale, M. C. Lechiara, C. Marini, C. Ferri, G. Desideri, "Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study--a randomized controlled trial," The American Journal of Clinical Nutrition, vol. 101 no. 3, pp. 538-548, 2015.
[400] J. P. Spencer, D. Vauzour, C. Rendeiro, "Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects," Archives of Biochemistry and Biophysics, vol. 492 no. 1-2, 2009.
[401] Y. Mo, E. Yue, N. Shi, K. Liu, "The protective effects of curcumin in cerebral ischemia and reperfusion injury through PKC- θ signaling," Cell Cycle, vol. 20 no. 5-6, pp. 550-560, 2021.
[402] K. Bavarsad, G. E. Barreto, M. A. Hadjzadeh, A. Sahebkar, "Protective effects of curcumin against ischemia-reperfusion injury in the nervous system," Molecular Neurobiology, vol. 56 no. 2, pp. 1391-1404, 2019.
[403] A. V. Witte, L. Kerti, D. S. Margulies, A. Flöel, "Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults," The Journal of Neuroscience, vol. 34 no. 23, pp. 7862-7870, 2014.
[404] R. S. Turner, R. G. Thomas, S. Craft, C. H. van Dyck, J. Mintzer, B. A. Reynolds, J. B. Brewer, R. A. Rissman, R. Raman, P. S. Aisen, "A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease," Neurology, vol. 85 no. 16, pp. 1383-1391, 2015.
[405] E. L. Wightman, J. L. Reay, C. F. Haskell, G. Williamson, T. P. Dew, D. O. Kennedy, "Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: a randomised, double-blind, placebo-controlled, cross-over investigation," The British Journal of Nutrition, vol. 112 no. 2, pp. 203-213, 2014.
[406] C. Moussa, M. Hebron, X. Huang, J. Ahn, R. A. Rissman, P. S. Aisen, R. S. Turner, "Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease," Journal of Neuroinflammation, vol. 14 no. 1, 2017.
[407] L. Baum, C. W. Lam, S. K. Cheung, T. Kwok, V. Lui, J. Tsoh, L. Lam, V. Leung, E. Hui, C. Ng, J. Woo, H. F. Chiu, W. B. Goggins, B. C. Zee, K. F. Cheng, C. Y. Fong, A. Wong, H. Mok, M. S. Chow, P. C. Ho, S. P. Ip, C. S. Ho, X. W. Yu, C. Y. Lai, M. H. Chan, S. Szeto, I. H. Chan, V. Mok, "Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease," Journal of Clinical Psychopharmacology, vol. 28 no. 1, pp. 110-113, 2008.
[408] K. K. Cheng, P. S. Chan, S. Fan, S. M. Kwan, K. L. Yeung, Y. X. Wáng, A. H. Chow, E. X. Wu, L. Baum, "Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI)," Biomaterials, vol. 44, pp. 155-172, 2015.
[409] K. H. Cox, A. Pipingas, A. B. Scholey, "Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population," Journal of Psychopharmacology, vol. 29 no. 5, pp. 642-651, 2015.
[410] K. Unno, F. Takabayashi, H. Yoshida, D. Choba, R. Fukutomi, N. Kikunaga, T. Kishido, N. Oku, M. Hoshino, "Daily consumption of green tea catechin delays memory regression in aged mice," Biogerontology, vol. 8 no. 2, pp. 89-95, 2007.
[411] S. Schaffer, H. Asseburg, S. Kuntz, W. E. Muller, G. P. Eckert, "Effects of polyphenols on brain ageing and Alzheimer's disease: focus on mitochondria," Molecular Neurobiology, vol. 46 no. 1, pp. 161-178, 2012.
[412] R. De la Torre, S. De Sola, M. Pons, A. Duchon, M. M. de Lagran, M. Farré, M. Fitó, B. Benejam, K. Langohr, J. Rodriguez, M. Pujadas, J. C. Bizot, A. Cuenca, N. Janel, S. Catuara, M. I. Covas, H. Blehaut, Y. Herault, J. M. Delabar, M. Dierssen, "Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans," Molecular Nutrition & Food Research, vol. 58 no. 2, pp. 278-288, 2014.
[413] E. L. Wightman, C. F. Haskell, J. S. Forster, R. C. Veasey, D. O. Kennedy, "Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation," Human Psychopharmacology, vol. 27 no. 2, pp. 177-186, 2012.
[414] A. Scholey, L. A. Downey, J. Ciorciari, A. Pipingas, K. Nolidin, M. Finn, M. Wines, S. Catchlove, A. Terrens, E. Barlow, L. Gordon, C. Stough, "Acute neurocognitive effects of epigallocatechin gallate (EGCG)," Appetite, vol. 58 no. 2, pp. 767-770, 2012.
[415] R. J. Kean, D. J. Lamport, G. F. Dodd, J. E. Freeman, C. M. Williams, J. A. Ellis, L. T. Butler, J. P. Spencer, "Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: an 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults," The American Journal of Clinical Nutrition, vol. 101 no. 3, pp. 506-514, 2015.
[416] M. H. Alharbi, D. J. Lamport, G. F. Dodd, C. Saunders, L. Harkness, L. T. Butler, J. P. Spencer, "Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males," European Journal of Nutrition, vol. 55 no. 6, pp. 2021-2029, 2016.
[417] D. J. Lamport, D. Pal, A. L. Macready, S. Barbosa-Boucas, J. M. Fletcher, C. M. Williams, J. P. Spencer, L. T. Butler, "The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: an acute, randomised, placebo-controlled cross-over trial in healthy, young adults," The British Journal of Nutrition, vol. 116 no. 12, pp. 2160-2168, DOI: 10.1017/S000711451600430X, 2016.
[418] H. Li, Z. Wang, "Comparison in antioxidant and antitumor activities of pine polyphenols and its seven biotransformation extracts by fungi," PeerJ, vol. 5, 2017.
[419] G. Li, L. Ruan, R. Chen, R. Wang, X. Xie, M. Zhang, L. Chen, Q. Yan, M. Reed, J. Chen, Y. Xu, J. Pan, W. Huang, "Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system," Metabolic Brain Disease, vol. 30 no. 6, pp. 1505-1514, DOI: 10.1007/s11011-015-9704-y, 2015.
[420] A. Filippi, O. A. Ciolac, C. Ganea, M. M. Mocanu, "ErbB proteins as molecular target of dietary phytochemicals in malignant diseases," Journal of Oncology, vol. 2017,DOI: 10.1155/2017/1532534, 2017.
[421] R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, G. Dawson, "Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain," ACS Chemical Neuroscience, vol. 6 no. 3, pp. 494-504, 2015.
[422] V. O. Gutierres, M. L. Campos, C. A. Arcaro, R. P. Assis, H. M. Baldan-Cimatti, R. G. Peccinini, S. Paula-Gomes, I. C. Kettelhut, A. M. Baviera, I. L. Brunetti, "Curcumin pharmacokinetic and pharmacodynamic evidences in streptozotocin-diabetic rats support the antidiabetic activity to be via metabolite(s)," Evidence-Based Complementary and Alternative Medicine, vol. 2015,DOI: 10.1155/2015/678218, 2015.
[423] I. Figueira, G. Garcia, R. C. Pimpão, A. P. Terrasso, I. Costa, A. F. Almeida, L. Tavares, T. F. Pais, P. Pinto, M. R. Ventura, A. Filipe, G. J. McDougall, D. Stewart, K. S. Kim, I. Palmela, D. Brites, M. A. Brito, C. Brito, C. N. Santos, "Polyphenols journey through blood-brain barrier towards neuronal protection," Scientific Reports, vol. 7 no. 1, 2017.
[424] M. M. Coelho, C. Fernandes, F. Remião, M. E. Tiritan, "Enantioselectivity in drug pharmacokinetics and toxicity: pharmacological relevance and analytical methods," Molecules, vol. 26 no. 11, 2021.
[425] D. Shin, S. J. Lee, Y. M. Ha, Y. S. Choi, J. W. Kim, S. R. Park, M. K. Park, "Pharmacokinetic and pharmacodynamic evaluation according to absorption differences in three formulations of ibuprofen," Drug Design, Development and Therapy, vol. 11, pp. 135-141, 2017.
[426] Z. Zhao, M. Xie, Y. Li, A. Chen, G. Li, J. Zhang, H. Hu, X. Wang, S. Li, "Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2," International Journal of Nanomedicine, vol. 10, pp. 3171-3181, 2015.
[427] Y. M. Tsai, C. F. Chien, L. C. Lin, T. H. Tsai, "Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration," International Journal of Pharmaceutics, vol. 416 no. 1, pp. 331-338, 2011.
[428] R. Jäger, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, "Comparative absorption of curcumin formulations," Nutrition Journal, vol. 13, 2014.
[429] A. M. Chuah, B. Jacob, Z. Jie, S. Ramesh, S. Mandal, J. K. Puthan, P. Deshpande, V. V. Vaidyanathan, R. W. Gelling, G. Patel, T. Das, S. Shreeram, "Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin," Food Chemistry, vol. 156, pp. 227-233, 2014.
[430] N. K. Gupta, V. K. Dixit, "Bioavailability enhancement of curcumin by complexation with phosphatidyl choline," Journal of Pharmaceutical Sciences, vol. 100 no. 5, pp. 1987-1995, 2011.
[431] S. Manju, K. Sreenivasan, "Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability," Journal of Colloid and Interface Science, vol. 359 no. 1, pp. 318-325, 2011.
[432] J. Li, Y. Wang, C. Yang, P. Wang, D. K. Oelschlager, Y. Zheng, D. A. Tian, W. E. Grizzle, D. J. Buchsbaum, M. Wan, "Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1," Molecular Pharmacology, vol. 76 no. 1, pp. 81-90, 2009.
[433] S. Debnath, D. Saloum, S. Dolai, C. Sun, S. Averick, K. Raja, J. E. Fata, "Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines," Anti-Cancer Agents in Medicinal Chemistry, vol. 13 no. 10, pp. 1531-1539, 2013.
[434] J. D. Lambert, J. Hong, D. H. Kim, V. M. Mishin, C. S. Yang, "Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice," The Journal of Nutrition, vol. 134 no. 8, pp. 1948-1952, 2004.
[435] C. M. Peters, R. J. Green, E. M. Janle, M. G. Ferruzzi, "Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea," Food Research International, vol. 43 no. 1, pp. 95-102, 2010.
[436] A. N. Salt, S. K. Plontke, "Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications," Hearing Research, vol. 368, pp. 28-40, 2018.
[437] K. Gottlieb, V. Wacher, J. Sliman, M. Pimentel, "Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders," Alimentary Pharmacology & Therapeutics, vol. 43 no. 2, pp. 197-212, 2016.
[438] K. Ono, K. Hasegawa, H. Naiki, M. Yamada, "Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro," Journal of Neuroscience Research, vol. 75 no. 6, pp. 742-750, 2004.
[439] L. Hua, C. W. Chiang, W. Cong, J. Li, X. Wang, L. Cheng, W. Feng, S. K. Quinney, L. Wang, L. Li, "The cancer drug fraction of metabolism database," CPT: Pharmacometrics & Systems Pharmacology, vol. 8 no. 7, pp. 511-519, 2019.
[440] H. Bártíková, I. Boušová, P. Jedličková, K. Lněničková, L. Skálová, B. Szotáková, "Effect of standardized cranberry extract on the activity and expression of selected biotransformation enzymes in rat liver and intestine," Molecules, vol. 19 no. 9, pp. 14948-14960, 2014.
[441] B. Scazzocchio, L. Minghetti, M. D'Archivio, "Interaction between gut microbiota and curcumin: a new key of understanding for the health effects of curcumin," Nutrients, vol. 12 no. 9,DOI: 10.3390/nu12092499, 2020.
[442] S. J. Stohs, O. Chen, S. D. Ray, J. Ji, L. R. Bucci, H. G. Preuss, "Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: a review," Molecules, vol. 25 no. 6, 2020.
[443] M. Metzler, E. Pfeiffer, S. I. Schulz, J. S. Dempe, "Curcumin uptake and metabolism," BioFactors, vol. 39 no. 1, pp. 14-20, 2013.
[444] J. Oliveira Pinho, M. Matias, M. M. Gaspar, "Emergent nanotechnological strategies for systemic chemotherapy against melanoma," Nanomaterials (Basel), vol. 9 no. 10, 2019.
[445] Y. Yan, Y. Chen, Z. Liu, F. Cai, W. Niu, L. Song, H. Liang, Z. Su, B. Yu, F. Yan, "Brain delivery of curcumin through low-intensity ultrasound-induced blood-brain barrier opening via lipid-PLGA nanobubbles," International Journal of Nanomedicine, vol. 16, pp. 7433-7447, 2021.
[446] Y. C. Kuo, C. L. Chen, R. Rajesh, "Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration," Acta Biomaterialia, vol. 87, pp. 207-222, 2019.
[447] A. R. Neves, L. van der Putten, J. F. Queiroz, M. Pinheiro, S. Reis, "Transferrin-functionalized lipid nanoparticles for curcumin brain delivery," Journal of Biotechnology, vol. 331, pp. 108-117, 2021.
[448] F. Meng, S. Asghar, Y. Xu, J. Wang, X. Jin, Z. Wang, J. Wang, Q. Ping, J. Zhou, Y. Xiao, "Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting," International Journal of Pharmaceutics, vol. 506 no. 1-2, pp. 46-56, 2016.
[449] C. Tringali, "Special issue: from natural polyphenols to synthetic bioactive analogues," Molecules, vol. 25 no. 12, 2020.
[450] F. Li, H. Zhao, R. Xu, X. Zhang, W. Zhang, M. Du, X. Liu, L. Fan, "Simultaneous optimization of the acidified water extraction for total anthocyanin content, total phenolic content, and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L.) using response surface methodology," Food Science & Nutrition, vol. 7 no. 9, pp. 2968-2976, 2019.
[451] S. Azam, M. Jakaria, I. S. Kim, J. Kim, M. E. Haque, D. K. Choi, "Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling," Frontiers in Immunology, vol. 10, 2019.
[452] V. Agarwal, S. Agarwal, R. Kaur, P. Pancham, H. Kaur, S. Bhardwaj, M. Singh, "In-silico validation and development of chlorogenic acid (CGA) loaded polymeric nanoparticle for targeting neurodegenerative disorders," Journal of Biomaterials and Nanobiotechnology, vol. 11 no. 4, 2020.
[453] K. Vanaja, M. A. Wahl, L. Bukarica, H. Heinle, "Liposomes as carriers of the lipid soluble antioxidant resveratrol: evaluation of amelioration of oxidative stress by additional antioxidant vitamin," Life Sciences, vol. 93 no. 24, pp. 917-923, 2013.
[454] C. Schmitt, A. Lechanteur, F. Cossais, C. Bellefroid, P. Arnold, R. Lucius, J. Held-Feindt, G. Piel, K. Hattermann, "Liposomal encapsulated curcumin effectively attenuates neuroinflammatory and reactive astrogliosis reactions in glia cells and organotypic brain slices," International Journal of Nanomedicine, vol. 15, pp. 3649-3667, 2020.
[455] A. Singh, P. S. Naidu, S. K. Kulkarni, "Quercetin potentiates L-Dopa reversal of drug-induced catalepsy in rats: possible COMT/MAO inhibition," Pharmacology, vol. 68 no. 2, pp. 81-88, DOI: 10.1159/000069533, 2003.
[456] C. Lu, Y. Guo, J. Yan, Z. Luo, H. B. Luo, M. Yan, L. Huang, X. Li, "Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer's disease," Journal of Medicinal Chemistry, vol. 56 no. 14, pp. 5843-5859, DOI: 10.1021/jm400567s, 2013.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2022 Lu Yan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

















1 Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
2 Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
3 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
4 Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China