Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This article proposes a two-phase hybrid method to train RBF neural networks for classification and regression problems. During the first phase, a range for the critical parameters of the RBF network is estimated and in the second phase a genetic algorithm is incorporated to locate the best RBF neural network for the underlying problem. The method is compared against other training methods of RBF neural networks on a wide series of classification and regression problems from the relevant literature and the results are reported.

Details

Title
A Two-Phase Evolutionary Method to Train RBF Networks
Author
Tsoulos, Ioannis G; Tzallas, Alexandros  VIAFID ORCID Logo  ; Karvounis, Evangelos  VIAFID ORCID Logo 
First page
2439
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637585318
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.