It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Polymer composites are gradually replacing traditional metal materials in the fields of aviation, aerospace, automotive and medicine due to their corrosion resistance, light weight and high strength. Moulding technology and organization morphology of polymer composite are key elements affecting the quality of products and their application, so a vacuum hot pressing process for graphenex/poly(ether ketone ketone) (PEKK) (x = 0%, 2%, 3%, 4%, 5%, 6%) composite powders is explored with particularly designed moulding parameters to achieve high conductive properties and good mechanical properties in graphene/PEKK composite sheet with thickness of 1.25 mm and diameter of 80 mm. The vacuum environment ensures that the graphene is not oxidized by air during hot pressing molding, which is essential for achieving conductive property in the graphene/PEKK composite; The hot pressing temperature of each graphene/PEKK composite powder is higher than glass transition temperature but lower than melting temperature, which ensures the graphene/PEKK composite powders is fully compacted and then graphene is fully lapped in the composite sheet. In addition, the graphene/PEKK composite sheet shows conductive property when the graphene content increases to 3wt%, and then the conductivity of the composites increases and then decreases with a peak value at 5wt% with increasing graphene content. By comparing the mechanical properties and microstructure morphology of the graphene/PEKK composite sheets, it was obtained that graphene content has an obvious effect on the mechanical properties of the composites, e.g., the mechanical properties will be increased as the graphene content increasing when graphene content is more than 3%. The graphene distribution law of the composite material with different graphene contents is analysed using a scanning electron microscope (SEM).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Research Institute of Petroleum Exploration and Development, Department of Oil & Gas Production Equipment, Beijing, China (GRID:grid.464414.7) (ISNI:0000 0004 1765 2021)
2 Jiangsu University, School of Mechanical Engineering, Zhenjiang, China (GRID:grid.440785.a) (ISNI:0000 0001 0743 511X)




