Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Our previous work reported a novel lattice structure composed of modified face-centered cubic (modified FCC) cells with crossing rods introduced at the center of each cell. In this work, the proposed modified FCC lattice is further investigated to ascertain its compression behaviors under different loading rates. For this purpose, numerical simulations were carried out for compressing the two-dimensional and three-dimensional modified FCC lattice structures with different loading rates, and to compare their deformation modes and energy absorption capacity under different loading rates. In addition, lattice specimens were fabricated using selective laser melting technology and quasi-static compression experiments were performed to validate the finite element simulations. The results indicate that the proposed modified FCC lattices exhibit better load-bearing capacity and energy absorption than the traditional FCC lattices under different loading rates. Under high-speed loading, the modified FCC structure is less susceptible to buckling, and the length ratio of the central cross-rod corresponding to maximum energy absorption capacity is larger.

Details

Title
Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading
Author
Wang, Peng; Yang, Fan  VIAFID ORCID Logo  ; Zhao, Jinfeng
First page
1949
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637761008
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.