Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A method that formulates the retrieval of drop size distribution (DSD) parameters from polarimetric radar variables at attenuating frequency as the solution of an inverse problem is presented. The DSD in each radar bin is represented by a normalized Gamma distribution defined by three parameters (Dm,N0*,μ). The direct problem that describes polarimetric radar observables—scattering and propagation terms—and their dependency on DSD parameters is analyzed based on T-matrix scattering simulations. The inverse algorithm and its application to the DSD retrieval are then presented. The inverse method is applied to an African Monsoon Multidisciplinary Analysis (AMMA) field campaign that deployed an X-band dual-polarization Doppler radar and optical disdrometers in Benin, West Africa, in 2006 and 2007. The dataset is composed of X-band polarimetric radar PPIs and disdrometer data for 15 organized convective systems observed in 2006. A priori information on DSD parameters (benchmark method) is derived from the polarimetric radar observables by applying power law relationships. The proposed retrieval method of DSD parameters leads to the following results as compared to the benchmark: (i) we found a better spatial consistency of the retrieved parameters, (ii) the reconstructed polarimetric radar observables are closer to the observations, (iii) The validation with disdrometer data confirms an improved estimation of the DSD parameters.

Details

Title
An Inverse Method for Drop Size Distribution Retrieval from Polarimetric Radar at Attenuating Frequency
Author
Alcoba, Matias 1   VIAFID ORCID Logo  ; Andrieu, Hervé 2   VIAFID ORCID Logo  ; Gosset, Marielle 1 

 Géoscience Environnement Toulouse, GET (CNRS-IRD-Université de Toulouse III-CNES), 31500 Toulouse, France; [email protected] 
 Géotechnique, Environnement, Risques Naturels et Sciences de la Terre, GERS-LEE, IFSTTAR, Universite Gustave Eiffel, 44344 Bouguenais, France; [email protected] 
First page
1116
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637783949
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.