Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately.

Details

Title
A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
Author
Albattah, Albatul 1   VIAFID ORCID Logo  ; Rassam, Murad A 2   VIAFID ORCID Logo 

 Department of Information Technology, College of Computer, Qassim University, Buraidah 52571, Saudi Arabia; [email protected] 
 Department of Information Technology, College of Computer, Qassim University, Buraidah 52571, Saudi Arabia; [email protected]; Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen 
First page
1951
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637787684
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.