Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we addressed the problem of dataset scarcity for the task of network intrusion detection. Our main contribution was to develop a framework that provides a complete process for generating network traffic datasets based on the aggregation of real network traces. In addition, we proposed a set of tools for attribute extraction and labeling of traffic sessions. A new dataset with botnet network traffic was generated by the framework to assess our proposed method with machine learning algorithms suitable for unbalanced data. The performance of the classifiers was evaluated in terms of macro-averages of F1-score (0.97) and the Matthews Correlation Coefficient (0.94), showing a good overall performance average.

Details

Title
A Novel Framework for Generating Personalized Network Datasets for NIDS Based on Traffic Aggregation
Author
Velarde-Alvarado, Pablo 1   VIAFID ORCID Logo  ; Gonzalez, Hugo 2   VIAFID ORCID Logo  ; Martínez-Peláez, Rafael 3   VIAFID ORCID Logo  ; Mena, Luis J 4   VIAFID ORCID Logo  ; Ochoa-Brust, Alberto 5   VIAFID ORCID Logo  ; Moreno-García, Efraín 6 ; Félix, Vanessa G 4   VIAFID ORCID Logo  ; Ostos, Rodolfo 4   VIAFID ORCID Logo 

 Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63000, Mexico; [email protected] 
 Academia de Tecnologías de la Información y Telemática, Universidad Politécnica de San Luis Potosí, San Luis Potosí 78363, Mexico; [email protected] 
 Facultad de Ingenierías y Tecnologías, Universidad De La Salle Bajío, Av. Universidad 602, León 37150, Mexico; [email protected] 
 Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico; [email protected] (V.G.F.); [email protected] (R.O.) 
 Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima, Av. Universidad 333, Colima 28040, Mexico; [email protected] 
 Dirección de Posgrado e investigación, Instituto Tecnológico de Tepic, Tepic 63175, Mexico; [email protected] 
First page
1847
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637791041
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.