Full text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Semiconductors used in the manufacture of solar cells are the subject of extensive research. Currently, silicon is the most commonly used material for photovoltaic cells, representing more than 80% of the global production. However, due to its very energy-intensive and costly production method, other materials appear to be preferable over silicon, including the chalcopyrite-structured semiconductors of the CIS-based family (Cu(In, Ga, Al) (Se, S)2). Indeed, these compounds have bandwidths between 1 eV (CuInSe2) and 3 eV (CuAlS2), allowing them to absorb most solar radiation. Moreover, these materials are currently the ones that make it possible to achieve the highest photovoltaic conversion efficiencies from thin-film devices, particularly Cu(In, Ga)Se2, which is considered the most efficient among all drifts based on CIS. In this review, we focus on the CIGS-based solar cells by exploring the different layers and showing the recent progress and challenges.

Details

Title
The Photovoltaic Cell Based on CIGS: Principles and Technologies
Author
Salhi, Billel
First page
1908
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637791806
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.