Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Groundwater is a crucial source of water supply in drought conditions, and an auxiliary water source in wet seasons. Due to its increasing importance in view of climate change, predicting groundwater level (GWL) needs to be improved to enhance management. We used adaptive neuro-fuzzy inference systems (ANFIS) to predict the GWL of the Urmia aquifer in northwestern Iran under various input scenarios using precipitation, temperature, groundwater withdrawal, GWL during the previous month, and river flow. In total, 11 input patterns from various combinations of variables were developed. About 70% of the data were used to train the models, while the rest were used for validation. In a second step, several metaheuristic algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR), and differential evolution (DE) were used to improve the model and, consequently, prediction performance. The results showed that (i) RMSE, MAPE, and NSE of 0.51 m, 0.00037 m, and 0.86, respectively, were obtained for the ANFIS model using all input variables, indicating a rather poor performance, (ii) metaheuristic algorithms were able to optimize the parameters of the ANFIS model in predicting GWL, (iii) the input pattern that included all input variables resulted in the most appropriate performance with RMSE, MAPE, and NSE of 0.28 m, 0.00019 m, and 0.97, respectively, using the ANIFS-ACOR hybrid model, (iv) results of Taylor’s diagram (CC = 0.98, STD = 0.2, and RMSD = 0.30), as well as the scatterplot (R2 = 0.97), showed that best prediction was achieved by ANFIS-ACOR, and (v) temperature and evaporation exerted stronger influence on GWL prediction than groundwater withdrawal and precipitation. The findings of this study reveal that metaheuristic algorithms can significantly improve the performance of the ANFIS model in predicting GWL.

Details

Title
A Combination of Metaheuristic Optimization Algorithms and Machine Learning Methods Improves the Prediction of Groundwater Level
Author
Kayhomayoon, Zahra 1 ; Babaeian, Faezeh 2 ; Milan, Sami Ghordoyee 3   VIAFID ORCID Logo  ; Naser Arya Azar 4 ; Berndtsson, Ronny 5   VIAFID ORCID Logo 

 Department of Geology, Payame Noor University, Tehran 193954697, Iran; [email protected] 
 Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University Tehran, Tehran 1477893855, Iran; [email protected] 
 Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran, Tehran 3391653755, Iran 
 Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran; [email protected] 
 Division of Water Resources Engineering and Centre for Advanced Middle Eastern Studies, Lund University, SE-221 00 Lund, Sweden 
First page
751
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637816640
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.