Full text

Turn on search term navigation

Copyright © 2022 Zhang Yuqing. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Today, energy management based on the digitalization of smart grids by the Internet of Things (IoT) is an emerging paradigm for power line systems. There are several environmental hazards to break down high-voltage power cables such as lightning, severe voltage fluctuations, and incorrect design of electric field distribution. So, identifying faulty high-voltage power lines is one of the most emerging challenges in smart grids to avoid disruption of the power distribution networks. This paper presents a new hybrid Convolutional Neural Network and Relief-F (CNN-RF) algorithm for an energy-aware collaborative learning approach to detect power line systems in smart grids. This hybrid approach ensures the stability and reliability of the defective power line system and improves the energy efficiency of the smart grids. This approach can detect the defective power line recognition using damaged power line images concerning automatic monitoring using Unmanned Aerial Vehicle (UAV) control system and IoT communications. By applying UAV control system and IoT communications on gathering damaged power line images, human faults and environmental hazards for extra data transmission are avoided. Experimental results show that the proposed CNN-RF model represents a high accuracy rate of 92.2% for recognizing damaged power lines. Also, the precision of damaged line detection ratio is higher than other prediction methods by the rate of 92.5%. Finally, the performance of the damaged line prediction approach in the CNN-RF method has a daily minimum cost in the IoT-based smart grids.

Details

Title
A Hybrid Convolutional Neural Network and Relief-F Algorithm for Fault Power Line Recognition in Internet of Things-Based Smart Grids
Author
Zhang, Yuqing 1   VIAFID ORCID Logo 

 Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China 
Editor
Nima Jafari Navimipour
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
15308677
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2638546661
Copyright
Copyright © 2022 Zhang Yuqing. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.