It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Despite that asymmetric stereodivergent synthesis has experienced great success to provide unusual processes for the creation of chirality complexity, concepts appliable to asymmetric stereodivergent catalysis are still limited. The dependence on the unusual capacity of each catalyst to precisely control the reactive site planar in the region poses unparalleled constraints on this field. Here, we first demonstrate that the chiral Cu-allenylidene species can participate in the stereodivergent propargylic alkylation of enals, in concert with chiral N-heterocyclic carbenes (NHCs). Thus, all four stereoisomers were obtained with excellent enantioselectivity and diastereoselectivity (up to >99% e.e. and >95:5 d.r.) from the same starting materials by simply altering chiral Cu-Pybox complex and NHC combinations. The rich chemistry workable in the products enables the structurally diverse synthesis of chiral functional molecules and holds great potential in alkaloid synthesis, as showcased by the preparation of the key building block to access (-)-perophoramidine.
The ability to construct multiple stereocenters in a modular fashion is an important goal of synthetic organic chemistry. Here the authors present a method to construct oxindoles in four stereoisomers with high enantioselectivity and diastereoselectivity from the same starting materials by using cooperative copper- and organocatalysis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Science and Technology of China, Department of Chemistry, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639)
2 Anhui University, Institutes of Physical Science and Information Technology, Hefei, China (GRID:grid.252245.6) (ISNI:0000 0001 0085 4987)
3 University of Science and Technology of China, Department of Chemistry, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, China (GRID:grid.59053.3a)