It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Low Earth Orbit satellite on-board accelerometers play an important role in improving our understanding of thermosphere density; however, the accelerometer-derived densities are subject to accelerometer calibration errors. In this study, two different dynamic calibration schemes, the accelerometer parameter-incorporated orbit fitting and precise orbit determination (POD), are investigated with the Gravity Recovery And Climate Experiment (GRACE) satellite accelerometers for thermosphere density derivation during years 2004–2007 (inclusive). We show that the GRACE accelerometer parametrization can be optimized by fixing scale coefficients and estimating biases every 60 min so that the orbit fitting and POD precision can be improved from 10 cm to 2 cm in the absence of empirical acceleration compensations and as a result the integrity of calibration parameters may be reserved. The orbit-fitting scheme demonstrates similar calibration precision with respect to POD. Their bias estimates in the along-track and cross-track components exhibit an offset within 0.1% and a standard deviation (STD) less than 0.3%. Correspondingly, a bias of 2.20% and a STD of 5.75% exists between their thermosphere density estimates. The orbit-fitting and POD-derived thermosphere densities are validated through the comparison against the results published by other institution. The comparison shows that either of them can achieve a precision level at 6%. To derive thermosphere density from the rapid-increasing amount of on-board accelerometer data sets, it is suggested to take full advantage of the orbit-fitting scheme due to its high efficiency as well as high precision.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 GNSS Research Center, Wuhan University, Wuhan, China; Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan, China
2 GNSS Research Center, Wuhan University, Wuhan, China