It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this work, we investigated the role of different parameters in the synthesis of intermetallic nanowires of CeIn3 by the metallic-flux nanonucleation (MFNN) method such as template pore diameter, crystallization temperature, heat treatment temperature, and synthesis time. Depending on the growing parameters, we obtained CeIn3 nanowires (d ∼ 350 nm) or CeAlO3 nanotubes. For the nanowires, we observed a suppression of the CeIn3 antiferromagnetic transition from the bulk TN ∼ 10 K to the nanowire system TN ∼ 3 K, which may be associated with the dimensionality affecting the interplay between magnetic exchange interactions, crystalline electrical field, and Kondo effects. We assume that the CeAlO3 nanotubes may result from a reaction with the alumina template and consequent rare-earth oxidation. Our work shows that even it is a great challenge to find the correct growth path of a particular intermetallic compound, the MFNN method can be a promising route to obtain rare-earth based nanowires.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Instituto de Física “Gleb Wataghin”, UNICAMP , Campinas-SP, 13083-857 , Brazil
2 Los Alamos National Laboratory, Los Alamos , New Mexico 87545 , USA