Abstract
Despite the impressive performance of correlation filter-based trackers in terms of robustness and accuracy, the trackers have room for improvement. The majority of existing trackers use a single feature or fixed fusion weights, which makes it possible for tracking to fail in the case of deformation or severe occlusion. In this paper, we propose a multi-feature response map adaptive fusion strategy based on the consistency of individual features and fused feature. It is able to improve the robustness and accuracy by building the better object appearance model. Moreover, since the response map has multiple local peaks when the target is occluded, we propose an anti-occlusion mechanism. Specifically, if the nonmaximal local peak is satisfied with our proposed conditions, we generate a new response map which is obtained by moving the center of the region of interest to the nonmaximal local peak position of the response map and re-extracting features. We then select the response map with the largest response value as the final response map. This proposed anti-occlusion mechanism can effectively cope with the problem of tracking failure caused by occlusion. Finally, by adjusting the learning rate in different scenes, we designed a high-confidence model update strategy to deal with the problem of model pollution. Besides, we conducted experiments on OTB2013, OTB2015, TC128 and UAV123 datasets and compared them with the current state-of-the-art algorithms, and the proposed algorithms have impressive advantages in terms of accuracy and robustness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Changsha University of Science and Technology, School of Computer and Communication Engineering, Changsha, China (GRID:grid.440669.9) (ISNI:0000 0001 0703 2206); Changsha University of Science and Technology, Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha, China (GRID:grid.440669.9) (ISNI:0000 0001 0703 2206)