Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor impairment, as well as tremors, stiffness, and rigidity. Besides the typical motor symptomatology, some Parkinsonians experience non-motor symptoms such as hyposmia, constipation, urinary dysfunction, orthostatic hypotension, memory loss, depression, pain, and sleep disturbances. The correct diagnosis of PD cannot be easy since there is no standard objective approach to it. After the incorporation of machine learning (ML) algorithms in medical diagnoses, the accuracy of disease predictions has improved. In this work, we have used three deep-learning-type cascaded neural network models based on the audial voice features of PD patients, called Recurrent Neural Networks (RNN), Multilayer Perception (MLP), and Long Short-Term Memory (LSTM), to estimate the accuracy of PD diagnosis. A performance comparison between the three models was performed on a sample of the subjects’ voice biomarkers. Experimental outcomes suggested that the LSTM model outperforms others with 99% accuracy. This study has also presented loss function curves on the relevance of good-fitting models to the detection of neurodegenerative diseases such as PD.

Details

Title
Cascaded Deep Learning Frameworks in Contribution to the Detection of Parkinson’s Disease
Author
Chintalapudi, Nalini  VIAFID ORCID Logo  ; Battineni, Gopi  VIAFID ORCID Logo  ; Hossain, Mohmmad Amran  VIAFID ORCID Logo  ; Amenta, Francesco  VIAFID ORCID Logo 
First page
116
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642338161
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.